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Neural Network Design Book

Neural Network Toolbox authors have written a textbook, Neural Network
Design (Hagan, Demuth, and Beale, ISBN 0-9717321-0-8). The book presents
the theory of neural networks, discusses their design and application, and
makes considerable use of MATLAB® and Neural Network Toolbox.
Demonstration programs from the book are used in various chapters of this
user’s guide. (You can find all the book demonstration programs in Neural
Network Toolbox by typing nnd.)

This book can be obtained from John Stovall at (303) 492-3648, or by e-mail at
John.Stovall@colorado.edu.

The book has

¢ An Instructor’s Manual for those who adopt the book for a class
¢ Transparency Masters for class use
If you are teaching a class and want an Instructor’s Manual (with solutions to

the book exercises), contact John Stovall at (303) 492-3648, or by e-mail at
John.Stovall@colorado.edu.

To look at sample chapters of the book and to obtain Transparency Masters, go
directly to the Neural Network Design page at

http://hagan.okstate.edu/nnd.html

Once there, you can obtain sample book chapters in PDF format and you can
download the Transparency Masters by clicking “Transparency
Masters (3.6MB).”

You can get the Transparency Masters in PowerPoint or PDF format.
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Getting Started

What Are Neural Networks? (p. 1-2)
Fitting a Function (p. 1-3)
Using the Documentation (p. 1-16)

Neural Network Applications (p. 1-17)

Defines and introduces neural networks
Shows how to train a neural network to fit a function

Identifies prerequisites for using Neural Network Toolbox
documentation

Provides an overview of neural network applications and
points you to the sections that describe them



1 Geri ng Started

What Are Neural Networks?

1-2

Neural networks are composed of simple elements operating in parallel. These
elements are inspired by biological nervous systems. As in nature, the network
function is determined largely by the connections between elements. You can
train a neural network to perform a particular function by adjusting the values
of the connections (weights) between elements.

Commonly neural networks are adjusted, or trained, so that a particular input
leads to a specific target output. Such a situation is shown below. There, the
network is adjusted, based on a comparison of the output and the target, until
the network output matches the target. Typically many such input/target pairs
are needed to train a network.

Neural Network
. including connections
(called weights)
Input between neurons Output

Compare

Adjust
weights

Neural networks have been trained to perform complex functions in various
fields, including pattern recognition, identification, classification, speech,
vision, and control systems.

Today neural networks can be trained to solve problems that are difficult for
conventional computers or human beings. Throughout the toolbox emphasis is
placed on neural network paradigms that build up to or are themselves used in
engineering, financial, and other practical applications.



Fitting a Function

Fitting a Function

Neural networks are good at fitting functions and recognizing patterns. In fact,
there is a proof that a fairly simple neural network can fit any practical
function.

Suppose, for instance that you have data from a housing application [HaRu78].
You want to design a network that can predict the value of a house (in $1000’s)
given 13 pieces of geographical and real estate information. You have a total of
506 example homes for which you have those 13 items of data and their
associated market values.

Three ways to solve this problem are available. A command-line solution is
shown below. A graphical user interface, nftool, is used in the second solution.
Finally, nntool is a third possibility (see “Graphical User Interface” on

page 3-22).

Using Command-Line Functions

First load the data, consisting of input vectors p and target vectors t, as follows:

load housing

Now preprocess the input and target values: map them into the interval [-1,1].
This simplifies the problem for the network. It also ensures that targets fall
into the range that your new feedforward network can reproduce.

[p2,ps] = mapminmax(p);
[t2,ts] = mapminmax(t);

The settings used to perform the linear mappings of inputs and targets are
returned as ps and ts. The input processing settings ps can be used later with
mapminmax to map other inputs for the network consistently. The target
processing settings ts can be used later to reverse map network outputs with
mapminmax to their original range.

Now divide the data into training, validation, and test sets. The validation set
is used to ensure that there is no overfitting in the final result. The test set
provides an independent measure of how well the network can be expected to
perform on data not used to train it. Take 20% of the data for the validation set
and 20% for the test set, leaving 60% for the training set. Pick the sets
randomly from the original data. All this is accomplished with the function
dividevec.

1-3
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[trainV,val,test] = dividevec(p2,t2,0.20,0.20);

You are now ready to create a network and train it. For this example, you will
use a two-layer network, with a tan-sigmoid transfer function in the hidden
layer and a linear transfer function in the output layer. This is a useful
structure for function approximation (or regression) problems. Use 20 neurons
(somewhat arbitrary) in the hidden layer. More neurons require more
computation, but allow the network to solve more complicated problems. The
network should have one output neuron, because there is only one target value
associated with each input vector. The network uses the default
Levenberg-Marquardt algorithm for training.

net = newff(minmax(p2),[20 1]);
[net,tr]=train(net,trainV.P,trainV.T,[],[],val,test);

TRAINLM, Epoch 0/100, MSE 0.446019/0, Gradient 1.10117/1e-10
TRAINLM, Epoch 19/100, MSE 0.00326836/0, Gradient 0.0221915/1e-10
TRAINLM, Validation stop.

Note that the function train was used here. It presents all the input vectors to
the network at once in a “batch.” Alternatively, you can present the input
vectors one at a time using the function adapt. The two training approaches are
discussed in “Training Styles” on page 2-18.
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This training stopped after 19 iterations because at that point the validation
error increased. Training is accompanied by a plot of the training, validation,
and test errors, shown in the following figure. The result here is reasonable,
because the final mean square error is small, the test set error and the
validation set error have similar characteristics, and it doesn’t appear that any
significant overfitting has occurred.

Performance is 0.00326836, Goal is 0

n)
T

1 0 T T T T T
Train

Validation [
Test |

Performance

g I I I I I
0 2 4 6 8 10 12 14 16 18
19 Epochs

10°
Stop Training

The next step is to perform some analysis of the network response. Put the
entire data set through the network (training, validation, and test sets) and
perform a linear regression between the network outputs, after they have been
mapped back to the original target range, and the corresponding targets.

a2 = sim(net,p2);
a = mapminmax('reverse',a2,ts);
[m,b,r] = postreg(a,t);

1-5
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The results are shown in the following figure.

Outputs vs. Targets, R=0.94663
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The output tracks the targets very well, and the R-value is over 0.9. If even
more accurate results were required, you could

® Reset the initial network weights and biases to new values with init and
train again

® Increase the number of hidden neurons

¢ Increase the number of training vectors

¢ Increase the number of input values, if more relevant information is
available

® Try a different training algorithm (see “Speed and Memory Comparison” on
page 5-33)

In this case, the network response is satisfactory and you can now use sim to
put the network to use on new inputs.
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Using the Neural Network Fitting Tool GUI

First load the data as follows:

load housing

Open the Neural Network Fitting Tool window with this command:

nftool

You will see the following.

Neural Network Fitting Tool

P To continue, click [Next].

% Welcome to the Neural Metwork Fitting Tool

Use a feed-forward neural network to fit an input-output data problem.

Introduction

With the Meural Metwork Fitting Tool you can select data,
create a network, train it, and evaluate its performance by
using mean sguare errar and regression analysis. If the
first network does not perdform well enough, you are led
through an iterative process of improvement.

This toal is suitable far static fitting problems using a
standard two-layer feed-forward neural netwark trained with
Levenberg-Marquardt. (Training is automatically done with
scaled conjugate gradient instead, if the data set is very
large.) Use NMTOOL for more advanced problems and
network solutions.

- W Mext ] [ @ cancel l

Now click Next to proceed.
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Now select p and t from the menus shown below.

Neural Network Fitting Tool

<L Select Data
5
YWhat inputs and associated targets define your problem?

Get Matrices from Workspace

Summary
_ | v“ ] Inputs are 13x506 representing 506 samples of 13
U Input Data: P elements.
@ Target Data: | ! v“ ] Targets are 1x506 representing 506 sarnples of 1 element.
Samples are oriented as: () Rows (@) Columns

Diata will be normalized to the range [-1,1]. The
normalization information will be stored with the
netwark ohject for future reference.

P To continue, click [Next].

’ @@ Back ” B Mext ] ’ @ cancel ]

Note that input and target data are automatically mapped into the range [-1,1].
Click Next again.
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Note that validation and test data sets are each set to 20% of the original data.

Neural Network Fitting Tool

Validation and Test Data
Set aside some samples for validation and testing.

Select Percentages Explanation

& Randomly divide up the 806 samples: & Three Kinds of Samples:

W Training: 60% 304 samples |\ Training:

@ Validation: 101 samples These are presented to the netwark during training, and the

netwark is adjusted according to its error.

W Testing: 101 samples

a “alidation:

These are used to measure network generalization, and to
halt training when generalization stops improving.

W Testing:
These have no effect on training and so provide an

independent measure of network performance during and
after training.

PP Change the percentages if desired, then click [Next] to continue.

@@ Back ” B et ] [ @ cancel l

Click Next.
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Note that the number of hidden neurons is set to 20. You can change this in

another run if you want. You might want to do this if the network does not
perform as well as you like.

Neural Network Fitting Tool

Network Size

Set the number of neurons in the feed-forward network's hidden layer.
Hidden Layer

Recommendation
Mumber of Hidden Neurans: Return to this panel and increase the number of
neurans if the network does not perorm well after
training.
Restore Defaults
Architecture
Input Hidden Layer Output Layer Output

13 20 1

P Change the number of neurons if desired, then click [Next] to continue.

’ @ Back ” B Mext ] [ @ cancel l

Click Next.
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Now click Train.

Neural Network Fitting Tool

Train Network
Train the network to fit the input and target data.

Train Network Results
Train using Levenberg-Marguardt optimization. & Samples MSE R
Training: 304 1.01147e-2 0.968751
W ‘alidation: 101 2281862 0.933362
W Testing: 101 3.24437e-2 0.917824

Training automatically stops when generalization stops
improving, as indicated by an increase in the mean square

arrar of the validation samples. [ View Regression

Notes
) Training multiple times will generate different results Regression R “alues measure the correlation

due to different initial conditions. hetween (unnormalized) outputs and targets. An R
iz Stapvees) B s e oremEs Soyee value of 1 means a close relationship, 0 a random

difference between (normalized) outputs and targets BT

fera means na error, over 0.6667 means high errar.

P View regression, train again, or click [Next] to continue.

@@ Back ” B et ] ’ @ cancel ]
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) Training with TRAINLM

10"

LOX

Performance is 0.00665278, Goalis 0

10°

Performance
-
[
T

T T T

Train 1
Validation |]
Test

Stop Training

1
10 15 20
23 Epochs

This time the training took 22 iterations.

Now click View Regression in the Neural Network Fitting Tool.
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) Figure 1: Regression Analysis of Outputs and Targets

(0.82)T+(1.8)

QOutputs A, Linear Fit: A:

Training Outputs vs. Targets, R=0.96875

These regression figures are similar to those of the command-line solution.

Validation Outputs vs. Targets, R=0.93336 Test Outputs vs. Targets, R=0.91783

@ Training Data Points o —_ < Validation Data Points - @ Test Data Points &y
45 . q 45 & 45 7
Best Linear Fit & o Best Linear Fit o = Best Linear Fit
40 F a0l AT = 40
@ o o ©
35 238 @ 235
T 2 W
30 < 30 o7 < 30
i o S ic
25 @ 25 © 25
by ° &l o
= o 2
20 =20 5 = 20
< <
@ ®
19 :a 15 %000 E‘ 15
10 3 10 o 3 10
5 5 o ° 5
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Targets T Targets T Targets T

In this case what is being shown are the regression plots for the output with
respect to training, validation, and test data.

Now click Next in the Neural Network Fitting Tool to evaluate the network.
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) Neural Network Fitting Tool

? Evaluate Network
Optionally test network on more data, then decide if network performance is good enough.

Iterate for improved performance Optionally perform additional tests

Try training again if you require marginal improvement. B Input Data: | nane] v“ ]
Wy Trein Again @ Target Data: | {none) v| ’ ]
Samples are oriented as: () Rows (@) Columns
-

Increase network size if more improvernent is needed. ]

=

’ El Increase Metwork Size (#

o

Mot working? You may need to use a larger data set.
Y g g Mo input or target data selected.

’ % Import Larger Data Set

P Select inputs and targets, click an improvement button, or click [Next].

[ @ Back || @ nNext | [ @ cancel |

At this point you could test the network against new data.

If you are dissatisfied with the network’s performance on the original or new

data you could train it again, increase the number of neurons, or perhaps get a
larger training data set.

Assuming you are satisfied, click Next.
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Use the buttons on this screen to save your results.

Neural Network Fitting Tool

/) Save Results
-
Save network and data to workspace.

Save Data to Workspace

- -4 Save network to MATLAB network ohject named:
[ix] Save performance and data set information to MATLAB struct named:
| Save output to MATLAB matrix named:
P4 Save error to MATLAB matrix named:
W []Save input to MATLAB matrix named: I:l
@ [ Save target to MATLAB matrix named: I:l
;_I |:| Save ALL selected values above to MATLAE struct named: I:'
% Save Results
Generate an M-function to reproduce results or solve other problems: [ Generate M-File

P To continue, click [Next].

(Fow ) +0e (G

You now have the network saved as net1 in the workspace. You can perform
additional tests on it, or put it to work on new inputs, using the function sim.

If you save the network with the name net1, then the preprocessing settings

used to map inputs and targets are stored in the net1.userdata property for

future use. Use the input processing settings to consistently process any input
data with mapminmax before giving it to the network. Use the target processing
settings with mapminmax to reverse-process any outputs of the network to the

ranges of the original targets.

If you are finished click the Finish button.
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Using the Documentation

You can proceed to a later chapter, read it, and use its functions without
difficulty if you first read Chapter 2, “Neuron Model and Network
Architectures,” and Chapter 3, “Perceptrons.”

Chapter 2, “Neuron Model and Network Architectures,” presents the
fundamentals of the neuron model, the architectures of neural networks. It
also discusses notation used in the toolbox.

Chapter 3, “Perceptrons,” tells how to create and train simple networks. It also
introduces a graphical user interface (GUI) that you can use to solve problems
without a lot of coding.

The neuron model and the architecture of a neural network describe how a
network transforms its input into an output. This transformation can be
viewed as a computation. These first two chapters tell about the computations
that are done and pave the way for an understanding of training methods for
the networks.
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Neural Network Applications

Applications in this Toolbox

Chapter 7, “Control Systems,” describes three practical neural network control
system applications, including neural network model predictive control, model
reference adaptive control, and a feedback linearization controller.

Other neural network applications are described in Chapter 11, “Applications.”

Business Applications

The 1988 DARPA Neural Network Study [DARP88] lists various neural
network applications, beginning in about 1984 with the adaptive channel
equalizer. This device, which is an outstanding commercial success, is a single-
neuron network used in long-distance telephone systems to stabilize voice
signals. The DARPA report goes on to list other commercial applications,
including a small word recognizer, a process monitor, a sonar classifier, and a
risk analysis system.

Neural networks have been applied in many other fields since the DARPA
report was written.

Aerospace

¢ High-performance aircraft autopilot, flight path simulation, aircraft control
systems, autopilot enhancements, aircraft component simulation, aircraft
component fault detection

Automotive
® Automobile automatic guidance system, warranty activity analysis

Banking

® Check and other document reading, credit application evaluation

Credit Card Activity Checking

® Spot unusual credit card activity that might possibly be associated with loss
of a credit card

1-17
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Defense

® Weapon steering, target tracking, object discrimination, facial recognition,
new kinds of sensors, sonar, radar and image signal processing including
data compression, feature extraction and noise suppression, signal/image
identification

Electronics

® Code sequence prediction, integrated circuit chip layout, process control,
chip failure analysis, machine vision, voice synthesis, nonlinear modeling

Entertainment

* Animation, special effects, market forecasting

Financial

® Real estate appraisal, loan advising, mortgage screening, corporate bond
rating, credit-line use analysis, portfolio trading program, corporate
financial analysis, currency price prediction

Industrial

® Neural networks are being trained to predict the output gases of furnaces
and other industrial processes. They then replace complex and costly
equipment used for this purpose in the past.

Insurance

¢ Policy application evaluation, product optimization

Manufacturing

e Manufacturing process control, product design and analysis, process and
machine diagnosis, real-time particle identification, visual quality
inspection systems, beer testing, welding quality analysis, paper quality
prediction, computer-chip quality analysis, analysis of grinding operations,
chemical product design analysis, machine maintenance analysis, project
bidding, planning and management, dynamic modeling of chemical process
system
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Medical

® Breast cancer cell analysis, EEG and ECG analysis, prosthesis design,
optimization of transplant times, hospital expense reduction, hospital
quality improvement, emergency-room test advisement

Oil and Gas

¢ Exploration

Robotics

® Trajectory control, forklift robot, manipulator controllers, vision systems

Speech

® Speech recognition, speech compression, vowel classification, text-to-speech
synthesis

Securities

® Market analysis, automatic bond rating, stock trading advisory systems

Telecommunications

® Image and data compression, automated information services, real-time
translation of spoken language, customer payment processing systems

Transportation

® Truck brake diagnosis systems, vehicle scheduling, routing systems
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Neuron Model and
Network Architectures

Neuron Model (p. 2-2)

Network Architectures (p. 2-8)
Data Structures (p. 2-13)

Training Styles (p. 2-18)

A description of the neuron model, including simple neurons,
transfer functions, and vector inputs

A discussion of single and multiple layers of neurons

A discussion of how the format of input data structures affects the
simulation of both static and dynamic networks

A description of incremental and batch training
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Neuron Model

Simple Neuron

A neuron with a single scalar input and no bias appears on the left below.

Input  Neuron without bias Input  Neuron with bias
N N N N
Pe—2 Tyl flip P ey S -H >
lb
—/ \ J U J
a=f(wp) a=jfwp+b)

The scalar input p is transmitted through a connection that multiplies its
strength by the scalar weight w to form the product wp, again a scalar. Here
the weighted input wp is the only argument of the transfer function f, which
produces the scalar output a. The neuron on the right has a scalar bias, 6. You
can view the bias as simply being added to the product wp as shown by the
summing junction or as shifting the function f to the left by an amount b. The
bias is much like a weight, except that it has a constant input of 1.

The transfer function net input n, again a scalar, is the sum of the weighted
input wp and the bias b. This sum is the argument of the transfer function f.
(Chapter 8, “Radial Basis Networks,” discusses a different way to form the net
input n.) Here fis a transfer function, typically a step function or a sigmoid
function, that takes the argument n and produces the output a. Examples of
various transfer functions are in “Transfer Functions” on page 2-3. Note that
w and b are both adjustable scalar parameters of the neuron. The central idea
of neural networks is that such parameters can be adjusted so that the network
exhibits some desired or interesting behavior. Thus, you can train the network
to do a particular job by adjusting the weight or bias parameters, or perhaps
the network itself will adjust these parameters to achieve some desired end.

All the neurons in this toolbox have provision for a bias, and a bias is used in
many of the examples and is assumed in most of this toolbox. However, you can
omit a bias in a neuron if you want.
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As previously noted, the bias b is an adjustable (scalar) parameter of the
neuron. It is not an input. However, the constant I that drives the bias is an
input and must be treated as such when you consider the linear dependence of
input vectors in Chapter 4, “Linear Filters.”

Transfer Functions

Many transfer functions are included in this toolbox. A complete list of them
can be found in the reference pages. Three of the most commonly used
functions are shown below.

+1

a = hardlim(n)
Hard-Limit Transfer Function
The hard-limit transfer function shown above limits the output of the neuron
to either 0, if the net input argument n is less than 0, or 1, if n is greater than

or equal to 0. This function is used in Chapter 3, “Perceptrons,” to create
neurons that make classification decisions.

The toolbox has a function, hardlim, to realize the mathematical hard-limit
transfer function shown above. Try the following code:

n=-5:0.1:5;
plot(n,hardlim(n), 'c+:');

It produces a plot of the function hardlim over the range -5 to +5.

All the mathematical transfer functions in the toolbox can be realized with a
function having the same name.

The linear transfer function is shown below.
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"""""" V. =

a = purelin(n)

Linear Transfer Function

Neurons of this type are used as linear approximators in Chapter 4, “Linear
Filters.”

The sigmoid transfer function shown below takes the input, which can have
any value between plus and minus infinity, and squashes the output into the
range 0 to 1.

S

a = logsig(n)
Log-Sigmoid Transfer Function

This transfer function is commonly used in backpropagation networks, in part
because it is differentiable.

The symbol in the square to the right of each transfer function graph shown
above represents the associated transfer function. These icons replace the
general fin the boxes of network diagrams to show the particular transfer
function being used.

For a complete listing of transfer functions and their icons, see the reference
pages. You can also specify your own transfer functions.

You can experiment with a simple neuron and various transfer functions by
running the demonstration program nnd2n1.
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Neuron with Vector Input

A neuron with a single R-element input vector is shown below. Here the
individual element inputs

p 1> P 9 3eee pR
are multiplied by weights

Wi, Wy, 2 Wi R

and the weighted values are fed to the summing junction. Their sum is simply
Wp, the dot product of the (single row) matrix W and the vector p.

Input Neuron w Vector Input

N7 A\

Where

" 4 R = number of
< > elements in
input vector

U/ ! J
a=f(Wp +b)

The neuron has a bias b, which is summed with the weighted inputs to form
the net input n. This sum, n, is the argument of the transfer function f.

n = w; Py +Wy 9Py + ...+ Wy pPR+D
This expression can, of course, be written in MATLAB® code as
n=Wwp+b

However, you will seldom be writing code at this level, for such code is already
built into functions to define and simulate entire networks.

Abbreviated Notation

The figure of a single neuron shown above contains a lot of detail. When you
consider networks with many neurons, and perhaps layers of many neurons,
there is so much detail that the main thoughts tend to be lost. Thus, the

2-5



2 Neuron Model and Network Architectures

2-6

authors have devised an abbreviated notation for an individual neuron. This
notation, which is used later in circuits of multiple neurons, is shown.

Input Neuron
N N\
Where...
P a
g A \ " L R = number of
IXR f elements in
Ix1 input vector
19 b %
R 1x1 1
__/ L J
a=f(Wp +b)

Here the input vector p is represented by the solid dark vertical bar at the left.
The dimensions of p are shown below the symbol p in the figure as Rx1. (Note
that a capital letter, such as R in the previous sentence, is used when referring
to the size of a vector.) Thus, p is a vector of R input elements. These inputs
postmultiply the single-row, R-column matrix W. As before, a constant 1 enters
the neuron as an input and is multiplied by a scalar bias b. The net input to the
transfer function fis n, the sum of the bias b and the product Wp. This sum is
passed to the transfer function f'to get the neuron’s output a, which in this case
is a scalar. Note that if there were more than one neuron, the network output
would be a vector.

A layer of a network is defined in the previous figure. A layer includes the
combination of the weights, the multiplication and summing operation (here
realized as a vector product Wp), the bias b, and the transfer function f. The
array of inputs, vector p, is not included in or called a layer.

Each time this abbreviated network notation is used, the sizes of the matrices
are shown just below their matrix variable names. This notation will allow you
to understand the architectures and follow the matrix mathematics associated
with them.

As discussed in “Transfer Functions” on page 2-3, when a specific transfer
function is to be used in a figure, the symbol for that transfer function replaces
the f shown above. Here are some examples.
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I

hardlim

74

purelin

ya

logsig

You can experiment with a two-element neuron by running the demonstration
program nnd2n2.
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Network Architectures

Two or more of the neurons shown earlier can be combined in a layer, and a
particular network could contain one or more such layers. First consider a
single layer of neurons.

A Layer of Neurons
A one-layer network with R input elements and S neurons follows.

Inputs  Layer of Neurons

A\
nl al
2 < >
l b, Where
1
n, a, R = number of
> p f > elements in
l b input vector
1 " 4 S = number of
D s » 1 s > neurons in layer
I
1
'/ \ J
a=f(Wp+b)

In this network, each element of the input vector p is connected to each neuron
input through the weight matrix W. The ith neuron has a summer that gathers
its weighted inputs and bias to form its own scalar output n(z). The various n(i)
taken together form an S-element net input vector n. Finally, the neuron layer
outputs form a column vector a. The expression for a is shown at the bottom of
the figure.

Note that it is common for the number of inputs to a layer to be different from
the number of neurons (i.e., R is not necessarily equal to S). A layer is not
constrained to have the number of its inputs equal to the number of its
neurons.
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You can create a single (composite) layer of neurons having different transfer
functions simply by putting two of the networks shown earlier in parallel. Both
networks would have the same inputs, and each network would create some of
the outputs.

The input vector elements enter the network through the weight matrix W.

wl’l wl’z wl’R
W = Wy 1 Wy g .- Wy p

ws’l wS’Z wS’R

Note that the row indices on the elements of matrix W indicate the destination
neuron of the weight, and the column indices indicate which source is the input
for that weight. Thus, the indices in w; 9 say that the strength of the signal
from the second input element o the first (and only) neuron is wy 5.

The S neuron R input one-layer network also can be drawn in abbreviated
notation.

Input Layer of Neurons
f \ h Where...
P a
W ——) R = number of
kxl V! n Sx1 elements in
SxR f input vector
j Sx1
1 b S = number of
R Sx1 S neurons in layer 1
NN J y
a=f (Wp+b)

Here p is an R length input vector, W is an SxR matrix, and a and b are S
length vectors. As defined previously, the neuron layer includes the weight
matrix, the multiplication operations, the bias vector b, the summer, and the
transfer function boxes.
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Inputs and Layers

To describe networks having multiple layers, the notation must be extended.
Specifically, it needs to make a distinction between weight matrices that are
connected to inputs and weight matrices that are connected between layers. It
also needs to identify the source and destination for the weight matrices.

We will call weight matrices connected to inputs input weights; we will call
weight matrices coming from layer outputs layer weights. Further,
superscripts are used to identify the source (second index) and the destination
(first index) for the various weights and other elements of the network. To
illustrate, the one-layer multiple input network shown earlier is redrawn in
abbreviated form below.

Input Layer 1
/ \ A\ Where...
P al R = number of
rreig R ¢ N KT elements in
SIXR ( Hl fi input vector
Stx1
I b j S = number of
R §5ix1 gl neurons in Layer 1
\_/ \ J

ai = fidWuip+b)

As you can see, the weight matrix connected to the input vector p is labeled as
an input weight matrix (IW'1) having a source 1 (second index) and a

destination 1 (first index). Elements of layer 1, such as its bias, net input, and
output have a superscript 1 to say that they are associated with the first layer.

“Multiple Layers of Neurons” uses layer weight (LW) matrices as well as input
weight (IW) matrices.

Multiple Layers of Neurons

A network can have several layers. Each layer has a weight matrix W, a bias
vector b, and an output vector a. To distinguish between the weight matrices,
output vectors, etc., for each of these layers in the figures, the number of the

layer is appended as a superscript to the variable of interest. You can see the
use of this layer notation in the three-layer network shown below, and in the
equations at the bottom of the figure.
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Inputs Layer 1 Layer 2 Layer 3
N7 A 4 A 4 A\
.1l n‘l all ZWZ’IH I’lzl - azl lwz,zll ’731 - 031
: A2 —P / A2 —P >
JE# o
1 2 2 1 3
n, L n, I
X/ DN e < A >
J I . J
1 : 1
}’lzs 2 ag I’l35 S azsx
—\= —=
lW 2.5 l bZS ZW $.5 l b}g}
1 1
AN J AN J
a'= fl(IWHp'i‘bl) al= fZ(sz.lal+b2) a’= f3(LW3.zaz+b3)

a’ = (LW T LW AW 'p+b")+b’)+b)

The network shown above has R! inputs, S! neurons in the first layer, S2
neurons in the second layer, etc. It is common for different layers to have
different numbers of neurons. A constant input 1 is fed to the bias for each
neuron.

Note that the outputs of each intermediate layer are the inputs to the following
layer. Thus layer 2 can be analyzed as a one-layer network with St inputs, S°
neurons, and an S%S? weight matrix W2. The input to layer 2 is a'; the output
is a%. Now that all the vectors and matrices of layer 2 have been identified, it
can be treated as a single-layer network on its own. This approach can be taken
with any layer of the network.

The layers of a multilayer network play different roles. A layer that produces
the network output is called an output layer. All other layers are called hidden
layers. The three-layer network shown earlier has one output layer (layer 3)
and two hidden layers (layer 1 and layer 2). Some authors refer to the inputs
as a fourth layer. This toolbox does not use that designation.
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The same three-layer network can also be drawn using abbreviated notation.

Input Layer 1 Layer 2 Layer 3
N\ N\ 7 N\ 7 N
p al a as=
Rx1 TWu ni Six1 LWz n2 $2x1 LWs2 s §3x1
SIXR @_’ f1 §2x81 @_’ 2 $3x§? @_> f3
Six1 $2x1 $3x1
l—}blj 1—>sz 1—)b3j
R Six1 S! S2x1 S2 S$3x1 S3
\__/ \ J . J . J
ar = f1AWLip+b1) a2 = f2(LWa21 a1 +b2) a3 =f3 (LW3.2a2 +b3)

a3 =f3 (LW32 £2 (LW2,1f1 IW11p +b1)+ b2)+b3 =y

Multiple-layer networks are quite powerful. For instance, a network of two
layers, where the first layer is sigmoid and the second layer is linear, can be
trained to approximate any function (with a finite number of discontinuities)
arbitrarily well. This kind of two-layer network is used extensively in Chapter
5, “Backpropagation.”

Here it is assumed that the output of the third layer, a®, is the network output
of interest, and this output is labeled as y. This notation is used to specify the
output of multilayer networks.
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Data Structures

This section discusses how the format of input data structures affects the
simulation of networks. It starts with static networks, and then continues with
dynamic networks.

There are two basic types of input vectors: those that occur concurrently (at the
same time, or in no particular time sequence), and those that occur sequentially
in time. For concurrent vectors, the order is not important, and if there were a
number of networks running in parallel, you could present one input vector to
each of the networks. For sequential vectors, the order in which the vectors
appear is important.

Simulation with Concurrent Inputs in a Static
Network

The simplest situation for simulating a network occurs when the network to be
simulated is static (has no feedback or delays). In this case, you need not be
concerned about whether or not the input vectors occur in a particular time
sequence, so you can treat the inputs as concurrent. In addition, the problem is
made even simpler by assuming that the network has only one input vector.
Use the following network as an example.

Inputs Linear Neuron

oY N
pl Wlk,l
:>Z A
p2 W1,2 lb
! Y,

a = purelin(Wp+b)

To set up this feedforward network, use the following command:

net = newlin([1 3;1 3],1);
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For simplicity assign the weight matrix and bias to be
W = [1 g}andb = [0]

The commands for these assignments are

net.IW{1,1} = [1 2];
net.b{1} = 0;

Suppose that the network simulation data set consists of @ = 4 concurrent
vectors:

o oee o[ oo

Concurrent vectors are presented to the network as a single matrix:
P=101223;2131];
You can now simulate the network:

A = sim(net,P)
A =
5 4 8 5

A single matrix of concurrent vectors is presented to the network, and the

network produces a single matrix of concurrent vectors as output. The result

would be the same if there were four networks operating in parallel and each
network received one of the input vectors and produced one of the outputs. The
ordering of the input vectors is not important, because they do not interact with

each other.

Simulation with Sequential Inputs in a Dynamic
Network

When a network contains delays, the input to the network would normally be
a sequence of input vectors that occur in a certain time order. To illustrate this

case, here is a simple network that contains one delay.
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Inputs Linear Neuron

N A

p(0)

n(t) a(t)
4

v

__J \ J
aty=w, p+w _p(i-1)

The following commands create this network:

net = newlin([-1 1],1,[0 1]);
net.biasConnect = 0;

Assign the weight matrix to be
W=l12
The command is
net.IW{1,1} = [1 2];
Suppose that the input sequence is
pl=[1], p2=[2], P3=[3], P4 = [4]
Sequential inputs are presented to the network as elements of a cell array:
P ={12 3 4};

You can now simulate the network:

A
A

sim(net,P)

[1] [4] [71 [10]

You input a cell array containing a sequence of inputs, and the network
produces a cell array containing a sequence of outputs. The order of the inputs
is important when they are presented as a sequence. In this case, the current
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output is obtained by multiplying the current input by 1 and the preceding
input by 2 and summing the result. If you were to change the order of the
inputs, the numbers obtained in the output would change.

Simulation with Concurrent Inputs in a Dynamic
Network

If you were to apply the same inputs as a set of concurrent inputs instead of a
sequence of inputs, you would obtain a completely different response.
(However, it is not clear why you would want to do this with a dynamic
network.) It would be as if each input were applied concurrently to a separate
parallel network. For the previous example, “Simulation with Sequential
Inputs in a Dynamic Network” on page 2-14, if you use a concurrent set of
inputs you have

pp=1], P2=1[2, Ps=[3], pPy=[4]

which can be created with the following code:

P=1[123 4];

When you simulate with concurrent inputs, you obtain

A = sim(net,P)
A =
1 2 3 4

The result is the same as if you had concurrently applied each one of the inputs
to a separate network and computed one output. Note that because you did not
assign any initial conditions to the network delays, they were assumed to be 0.
For this case the output is simply 1 times the input, because the weight that
multiplies the current input is 1.

In certain special cases, you might want to simulate the network response to

several different sequences at the same time. In this case, you would want to

present the network with a concurrent set of sequences. For example, suppose
you wanted to present the following two sequences to the network:

p1(1) = [1], P1(2) = [2], P1(3) = [3], P1(4) = [4]
Pa(1) = [4], P2(2) = [3], Pa(3) = [2], Pa(4) = [1]
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The input P should be a cell array, where each element of the array contains
the two elements of the two sequences that occur at the same time:

P ={[14] [23] [32] [41]};
You can now simulate the network:

A = sim(net,P);
The resulting network output would be

A= {[1 4] [4 11] [7 8] [10 5]}

As you can see, the first column of each matrix makes up the output sequence
produced by the first input sequence, which was the one used in an earlier
example. The second column of each matrix makes up the output sequence
produced by the second input sequence. There is no interaction between the
two concurrent sequences. It is as if they were each applied to separate
networks running in parallel.

The following diagram shows the general format for the input P to the sim
function when there are @ concurrent sequences of T'S time steps. It covers all
cases where there is a single input vector. Each element of the cell array is a
matrix of concurrent vectors that correspond to the same point in time for each
sequence. If there are multiple input vectors, there will be multiple rows of
matrices in the cell array.

Qth Sequence

\J v v

A A A

First Sequence

In this section, you apply sequential and concurrent inputs to dynamic
networks. In “Simulation with Concurrent Inputs in a Static Network” on
page 2-13, you applied concurrent inputs to static networks. It is also possible
to apply sequential inputs to static networks. It does not change the simulated
response of the network, but it can affect the way in which the network is
trained. This will become clear in “Training Styles” on page 2-18.
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Training Styles

This section describes two different styles of training. In incremental training
the weights and biases of the network are updated each time an input is
presented to the network. In batch training the weights and biases are only
updated after all the inputs are presented.

Incremental Training (of Adaptive and Other
Networks)

Incremental training can be applied to both static and dynamic networks,
although it is more commonly used with dynamic networks, such as adaptive
filters. This section demonstrates how incremental training is performed on
both static and dynamic networks.

Incremental Training with Static Networks

Consider again the static network used for the first example. You want to train
it incrementally, so that the weights and biases are updated after each input is
presented. In this case you use the function adapt, and the inputs and targets
are presented as sequences.

Suppose you want to train the network to create the linear function:
t=2p;+py

Then for the previous inputs,

el

the targets would be

ty=[4], ta=[5], t5=[7], ts = [7]

First set up the network with zero initial weights and biases. Also set the
learning rate to zero initially, to show the effect of the incremental training.

net = newlin([-1 1;-1 1],1,0,0);

net.IW{1,1} = [0 0];
net.b{1} = 0;
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For incremental training you present the inputs and targets as sequences:

{01521 [251] [2;3] [3511};
{4577}

P
T

Recall from “Simulation with Concurrent Inputs in a Static Network” on
page 2-13, that for a static network the simulation of the network produces the
same outputs whether the inputs are presented as a matrix of concurrent
vectors or as a cell array of sequential vectors. This is not true when training
the network, however. When you use the adapt function, if the inputs are
presented as a cell array of sequential vectors, then the weights are updated as
each input is presented (incremental mode). As shown in the next section, if the
inputs are presented as a matrix of concurrent vectors, then the weights are
updated only after all inputs are presented (batch mode).

You are now ready to train the network incrementally.
[net,a,e,pf] = adapt(net,P,T);

The network outputs remain zero, because the learning rate is zero, and the
weights are not updated. The errors are equal to the targets:

a = [0] [0] [0] (0]
e = [4] [5] [7] [7]

If you now set the learning rate to 0.1 you can see how the network is adjusted
as each input is presented:

net.inputWeights{1,1}.learnParam.1lr=0.1;
net.biases{1,1}.learnParam.1r=0.1;
[net,a,e,pf] = adapt(net,P,T);

a = [0] [2] [6.0] [5.8]

e = [4] [3] [1.0] [1.2]

The first output is the same as it was with zero learning rate, because no
update is made until the first input is presented. The second output is different,
because the weights have been updated. The weights continue to be modified
as each error is computed. If the network is capable and the learning rate is set
correctly, the error is eventually driven to zero.

Incremental Training with Dynamic Networks

You can also train dynamic networks incrementally. In fact, this would be the
most common situation. Take the linear network with one delay at the input,
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used in a previous example. Initialize the weights to zero and set the learning
rate to 0.1.

net = newlin([-1 1],1,[0 1],0.1);
net.IW{1,1} = [0 O];
net.biasConnect = 0;

To train this network incrementally, present the inputs and targets as
elements of cell arrays.

Pi = {1};
P = {23 4};
T ={357};

Here you attempt to train the network to sum the current and previous inputs
to create the current output. This is the same input sequence used in the
previous example of using sim, except that you assign the first term in the
sequence as the initial condition for the delay. You can now sequentially train
the network using adapt.

[net,a,e,pf] = adapt(net,P,T,Pi);
a [0] [2.4] [ 7.98]
e [3] [2.6] [-0.98]

The first output is zero, because the weights have not yet been updated. The
weights change at each subsequent time step.

Batch Training
Batch training, in which weights and biases are only updated after all the

inputs and targets are presented, can be applied to both static and dynamic
networks. Both types of networks are discussed in this section.

Batch Training with Static Networks

Batch training can be done using either adapt or train, although train is
generally the best option, because it typically has access to more efficient
training algorithms. Incremental training can only be done with adapt; train
can only perform batch training.

Begin with the static network used in previous examples. The learning rate is
set to 0.1.

net = newlin([-1 1;-1 1],1,0,0.1);
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net.IW{1,1} = [0 O];
net.b{1} = 0;

For batch training of a static network with adapt, the input vectors must be
placed in one matrix of concurrent vectors.

P
T

[1223;2131];
[4 57 7];

When you call adapt, it invokes trains (the default adaptation function for the
linear network) and learnwh (the default learning function for the weights and
biases). Therefore, Widrow-Hoff learning is used.

[net,a,e,pf] = adapt(net,P,T);
a=0000
e=4577

Note that the outputs of the network are all zero, because the weights are not
updated until all the training set has been presented. If you display the
weights, you find

»net.IW{1,1}
ans = 4.9000  4.1000
»net.b{1}
ans =
2.3000

This is different from the result after one pass of adapt with incremental
updating.

Now perform the same batch training using train. Because the Widrow-Hoff
rule can be used in incremental or batch mode, it can be invoked by adapt or
train. (There are several algorithms that can only be used in batch mode (e.g.,
Levenberg-Marquardt), so these algorithms can only be invoked by train.)

The network is set up in the same way.

net = newlin([-1 1;-1 1]1,1,0,0.1);
net.IW{1,1} = [0 O];
net.b{1} = 0;

For this case, the input vectors can either be placed in a matrix of concurrent
vectors or in a cell array of sequential vectors. Within train any cell array of
sequential vectors is converted to a matrix of concurrent vectors. This is
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because the network is static, and because train always operates in batch
mode. Concurrent mode operation is generally used whenever possible,
because it has a more efficient MATLAB implementation.

[1223; 2131];
[4577];

P
T

Now you are ready to train the network. Train it for only one epoch, because
you used only one pass of adapt. The default training function for the linear
network is trainb, and the default learning function for the weights and biases
is learnwh, so you should get the same results obtained using adapt in the
previous example, where the default adaptation function was trains.

net.inputWeights{1,1}.learnParam.1lr = 0.1;
net.biases{1}.learnParam.1lr = 0.1;
net.trainParam.epochs = 1;

net = train(net,P,T);

If you display the weights after one epoch of training, you find

»net.IW{1,1}
ans = 4.9000 4.1000
»net.b{1}
ans =
2.3000

This is the same result as the batch mode training in adapt. With static
networks, the adapt function can implement incremental or batch training,
depending on the format of the input data. If the data is presented as a matrix
of concurrent vectors, batch training occurs. If the data is presented as a
sequence, incremental training occurs. This is not true for train, which always
performs batch training, regardless of the format of the input.

Batch Training with Dynamic Networks

Training static networks is relatively straightforward. If you use train the
network is trained in batch mode and the inputs are converted to concurrent
vectors (columns of a matrix), even if they are originally passed as a sequence
(elements of a cell array). If you use adapt, the format of the input determines
the method of training. If the inputs are passed as a sequence, then the
network is trained in incremental mode. If the inputs are passed as concurrent
vectors, then batch mode training is used.
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With dynamic networks, batch mode training is typically done with train only,
especially if only one training sequence exists. To illustrate this, consider again
the linear network with a delay. Use a learning rate of 0.02 for the training.
(When using a gradient descent algorithm, you typically use a smaller learning
rate for batch mode training than incremental training, because all the
individual gradients are summed before determining the step change to the
weights.)

net = newlin([-1 1],1,[0 1],0.02);
net.IW{1,1}=[0 0];
net.biasConnect=0;
net.trainParam.epochs = 1;

Pi = {1};
P = {2 3 4};
T = {35 6)};

You want to train the network with the same sequence used for the
incremental training earlier, but this time you want to update the weights only
after all the inputs are applied (batch mode). The network is simulated in
sequential mode, because the input is a sequence, but the weights are updated
in batch mode.

net=train(net,P,T,Pi);

The weights after one epoch of training are

»net.IW{1,1}
ans = 0.9000  0.6200

These are different weights than you would obtain using incremental training,
where the weights would be updated three times during one pass through the
training set. For batch training the weights are only updated once in each
epoch.

Training Tip
The show parameter allows you to set the number of epochs between feedback

during training. For instance, this code gives you training status information
every 35 epochs when the network is later trained with train.

net.trainParam.show= 35;
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Sometimes it is convenient to disable all training displays. That is done by
setting show to NaN.

net.trainParam.show = NaN;

2-24



Perceptrons

Introduction (p. 3-2)

Neuron Model (p. 3-3)
Perceptron Architecture (p. 3-5)
Creating a Perceptron (newp) (p. 3-6)

Learning Rules (p. 3-11)

Perceptron Learning Rule (learnp) (p. 3-12)
Training (train) (p. 3-15)

Limitations and Cautions (p. 3-20)
Graphical User Interface (p. 3-22)

Introduces the chapter, and provides information on
additional resources

Provides a model of a perceptron neuron
Graphically displays perceptron architecture

Describes how to create a perceptron in Neural
Network Toolbox

Introduces network learning rules

Discusses the perceptron learning rule learnp
Discusses the training function train

Describes the limitations of perceptron networks

Discusses the Network/Data Manager GUI



3 Perceptrons

3-2

Introduction

This chapter has a number of objectives. First it introduces you to learning
rules, methods of deriving the next changes that might be made in a network,
and training, a procedure whereby a network is actually adjusted to do a
particular job. Along the way are described a toolbox function to create a simple
perceptron network and functions to initialize and simulate such networks.
The perceptron is used as a vehicle for tying these concepts together.

Rosenblatt [Rose61] created many variations of the perceptron. One of the
simplest was a single-layer network whose weights and biases could be trained
to produce a correct target vector when presented with the corresponding input
vector. The training technique used is called the perceptron learning rule. The
perceptron generated great interest due to its ability to generalize from its
training vectors and learn from initially randomly distributed connections.
Perceptrons are especially suited for simple problems in pattern classification.
They are fast and reliable networks for the problems they can solve. In
addition, an understanding of the operations of the perceptron provides a good
basis for understanding more complex networks.

This chapter defines what is meant by a learning rule, explains the perceptron
network and its learning rule, and tells you how to initialize and simulate
perceptron networks.

The discussion of perceptrons in this chapter is necessarily brief. For a more
thorough discussion, see Chapter 4, “Perceptron Learning Rule,” of
[HDB1996], which discusses the use of multiple layers of perceptrons to solve
more difficult problems beyond the capability of one layer.

You might also want to refer to the original book on the perceptron, Rosenblatt,
F., Principles of Neurodynamics, Washington D.C., Spartan Press, 1961
[Rose61].

Important Perceptron Functions

You can create perceptron networks with the function newp. These networks
can be initialized, simulated, and trained with init, sim, and train. “Neuron
Model” on page 3-3 describes how perceptrons work and introduces these
functions.
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Neuron Model

A perceptron neuron, which uses the hard-limit transfer function hardlim, is
shown below.

Input  Perceptron Neuron

Where

R = number of

n ;J: il elements in

input vector

) ! J
a = hardlim (Wp +b)

Each external input is weighted with an appropriate weight wy;, and the sum
of the weighted inputs is sent to the hard-limit transfer function, which also
has an input of 1 transmitted to it through the bias. The hard-limit transfer
function, which returns a 0 or a 1, is shown below.

+1

a = hardlim(n)

Hard-Limit Transfer Function

The perceptron neuron produces a 1 if the net input into the transfer function
is equal to or greater than 0; otherwise it produces a 0.

The hard-limit transfer function gives a perceptron the ability to classify input
vectors by dividing the input space into two regions. Specifically, outputs will
be 0 if the net input n is less than 0, or 1 if the net input » is 0 or greater. The
input space of a two-input hard limit neuron with the weights

wy g = -1, wy g = 1 and a bias b = 1 is shown below.
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Two classification regions are formed by the decision boundary line L at

Wp +b = 0. This line is perpendicular to the weight matrix W and shifted
according to the bias b. Input vectors above and to the left of the line L will
result in a net input greater than 0 and, therefore, cause the hard-limit neuron
to output a 1. Input vectors below and to the right of the line L cause the neuron
to output 0. You can pick weight and bias values to orient and move the
dividing line so as to classify the input space as desired.

Hard-limit neurons without a bias will always have a classification line going
through the origin. Adding a bias allows the neuron to solve problems where
the two sets of input vectors are not located on different sides of the origin. The
bias allows the decision boundary to be shifted away from the origin, as shown
in the plot above.

You might want to run the demonstration program nnd4db. With it you can
move a decision boundary around, pick new inputs to classify, and see how the
repeated application of the learning rule yields a network that does classify the
input vectors properly.
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Perceptron Architecture

The perceptron network consists of a single layer of S perceptron neurons
connected to R inputs through a set of weights w; ;, as shown below in two
forms. As before, the network indices i and j indicate that w; ; is the strength of
the connection from the jth input to the ith neuron.

Input Perceptron Layer Input Perceptron Layer

A r Nr A

a,

> R£1 W \ 531’
SXR n J:
Sx1

a, 1-) b j

R Sx1 S
. —/ \ J
a = hardlim(Wp + b)

> Where

R = number of elements in input

_/ \ J
a = hardlim(Wp + b)

S = number of neurons in layer

The perceptron learning rule described shortly is capable of training only a
single layer. Thus only one-layer networks are considered here. This restriction
places limitations on the computation a perceptron can perform. The types of
problems that perceptrons are capable of solving are discussed in “Limitations
and Cautions” on page 3-20.
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Creating a Perceptron (newp)

A perceptron can be created with the function newp,

net = newp(PR, S)
where input arguments are as follows:

® PR is an R-by-2 matrix of minimum and maximum values for R input
elements.

® Sis the number of neurons.
Commonly the hardlim function is used in perceptrons, so it is the default.

The code below creates a perceptron network with a single one-element input
vector and one neuron. The range for the single element of the single input
vector is [0 2].

net = newp([0 2],1);

You can see what network has been created by executing the following code:

inputweights = net.inputweights{1,1}

which yields
inputweights =
delays: 0
initFcn: 'initzero’
learn: 1

learnFcn: 'learnp'’
learnParam: []
size: [1 1]
userdata: [1x1 struct]
weightFcn: 'dotprod’

The default learning function is learnp, which is discussed in “Perceptron
Learning Rule (learnp)” on page 3-12. The net input to the hardlim transfer
function is dotprod, which generates the product of the input vector and weight
matrix and adds the bias to compute the net input.

The default initialization function initzero is used to set the initial values of
the weights to zero.
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Similarly,

biases = net.biases{1}

gives

biases
initFcn: 'initzero'
learn: 1
learnFcn: 'learnp'
learnParam: []
size: 1
userdata: [1x1 struct]

You can see that the default initialization for the bias is also 0.

Simulation (sim)
To show how sim works, examine a simple problem.

Suppose you take a perceptron with a single two-element input vector, like that
discussed in the decision boundary figure on page 3-4. Define the network with

net = newp([-2 2;-2 +2],1);

This gives zero weights and biases, so if you want a particular set other than
zeros, you have to create them. Set the two weights and the one bias to -1, 1,
and 1, as they were in the decision boundary figure, with the following two lines
of code:

net.IW{1,1}= [-1 1];
net.b{1} = [1];

To make sure that these parameters were set correctly, check them with

net.IW{1,1}
ans =

-1 1
net.b{1}
ans =

3-7
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Now see if the network responds to two signals, one on each side of the
perceptron boundary.

p1 = [151];
al = sim(net,p1)
al =

and for

p2
a2
a2

[15-11;
sim(net,p2)

0

Sure enough, the perceptron classified the two inputs correctly.

You could present the two inputs in a sequence and get the outputs in a
sequence as well.

p3 = {[1;1] [15-11};
a3 = sim(net,p3)
a3 =

(1] (0]

Initialization (init)
You can use the function init to reset the network weights and biases to their
original values. Suppose, for instance, that you start with the network

net = newp([-2 2;-2 +2],1);

Now check its weights with
wts = net.IW{1,1}

which gives, as expected,

wts =
0 0

In the same way, you can verify that the bias is 0 with
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bias = net.b{1}
which gives
bias =
0

Now set the weights to the values 3 and 4 and the bias to the value 5 with

net.IW{1,1} = [3,4];
net.b{1} = 5;

Recheck the weights and bias as shown above to verify that the change has
been made. Sure enough,

wts =

bias
5
Now use init to reset the weights and bias to their original values.
net = init(net);
You can check as shown above to verify that.

wts =

bias
0

You can change the way that a perceptron is initialized with init. For
instance, you can redefine the network input weights and bias initFcns as
rands, and then apply init as shown below.

net.inputweights{1,1}.initFcn = 'rands';
net.biases{1}.initFcn = 'rands';
net = init(net);
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Now check the weights and bias.

wts =
0.2309 0.5839
biases =

-0.1106

You can see that the weights and bias have been given random numbers.
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Learning Rules

A learning rule is defined as a procedure for modifying the weights and biases
of a network. (This procedure can also be referred to as a training algorithm.)
The learning rule is applied to train the network to perform some particular
task. Learning rules in this toolbox fall into two broad categories: supervised
learning, and unsupervised learning.

In supervised learning, the learning rule is provided with a set of examples (the
training set) of proper network behavior

{pl!tl} s {p21t2} LIRS {antQ}

where p q is an input to the network, and t | is the corresponding correct
(target) output. As the inputs are applied to the network, the network outputs
are compared to the targets. The learning rule is then used to adjust the
weights and biases of the network in order to move the network outputs closer
to the targets. The perceptron learning rule falls in this supervised learning
category.

In unsupervised learning, the weights and biases are modified in response to
network inputs only. There are no target outputs available. Most of these
algorithms perform clustering operations. They categorize the input patterns
into a finite number of classes. This is especially useful in such applications as
vector quantization.
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Perceptron Learning Rule (learnp)

Perceptrons are trained on examples of desired behavior. The desired behavior
can be summarized by a set of input, output pairs

Pity,poty,.., PQtQ

where p is an input to the network and t is the corresponding correct (target)
output. The objective is to reduce the error e, which is the difference t — a
between the neuron response a and the target vector t. The perceptron learning
rule learnp calculates desired changes to the perceptron’s weights and biases,
given an input vector p and the associated error e. The target vector t must
contain values of either 0 or 1, because perceptrons (with hardlim transfer
functions) can only output these values.

Each time learnp is executed, the perceptron has a better chance of producing
the correct outputs. The perceptron rule is proven to converge on a solution in
a finite number of iterations if a solution exists.

If a bias is not used, learnp works to find a solution by altering only the weight
vector w to point toward input vectors to be classified as 1 and away from
vectors to be classified as 0. This results in a decision boundary that is
perpendicular to w and that properly classifies the input vectors.

There are three conditions that can occur for a single neuron once an input
vector p is presented and the network’s response a is calculated:

CASE 1. If an input vector is presented and the output of the neuron is correct
(a=tande=1t-a=0), then the weight vector w is not altered.

CASE 2. If the neuron output is 0 and should have been 1 (a=0and t = 1, and
e =t —a=1), the input vector p is added to the weight vector w. This makes
the weight vector point closer to the input vector, increasing the chance that
the input vector will be classified as a 1 in the future.

CASE 3. If the neuron output is 1 and should have been 0 (a=1and t =0, and
e =t —a=-1), the input vector p is subtracted from the weight vector w. This
makes the weight vector point farther away from the input vector, increasing
the chance that the input vector will be classified as a 0 in the future.



Perceptron leamning Rule (learnp)

The perceptron learning rule can be written more succinctly in terms of the
error e = t — a and the change to be made to the weight vector Aw:

CASE 1. If e = 0, then make a change Aw equal to 0.
CASE 2. If e = 1, then make a change Aw equal to pT.

CASE 3. If e = -1, then make a change Aw equal to —pT.
All three cases can then be written with a single expression:
AW = (t—-a)pT = epT

You can get the expression for changes in a neuron’s bias by noting that the
bias is simply a weight that always has an input of 1:

Ab = (t-a)(1) = e

For the case of a layer of neurons you have
AW = (t-a)(p)T = e(p)T

and
Ab = (t-a) =e

The perceptron learning rule can be summarized as follows:

wnew _ Wold + epT
and
bnew _ bold +e

wheree = t—a.

Now try a simple example. Start with a single neuron having an input vector
with just two elements.

net = newp([-2 2;-2 +2],1);

To simplify matters, set the bias equal to 0 and the weights to 1 and -0.8.

net.b{1} = [0];
w = [1-0.8];
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net.IW{1,1} = w;
The input target pair is given by

p=11; 2];
t=[1];

You can compute the output and error with

a = sim(net,p)
a =
0
e = t-a
e =

and use the function learnp to find the change in the weights.

dw = learnp(w,p,[1,[1,[1,[1,e,[1,[1,[1)
dw

1 2

The new weights, then, are obtained as
w=w + dw
W =

2.0000 1.2000

The process of finding new weights (and biases) can be repeated until there are
no errors. Recall that the perceptron learning rule is guaranteed to converge in
a finite number of steps for all problems that can be solved by a perceptron.
These include all classification problems that are linearly separable. The
objects to be classified in such cases can be separated by a single line.

You might want to try demo nnd4pr. It allows you to pick new input vectors and
apply the learning rule to classify them.
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Training (train)

If sim and learnp are used repeatedly to present inputs to a perceptron, and to
change the perceptron weights and biases according to the error, the
perceptron will eventually find weight and bias values that solve the problem,
given that the perceptron can solve it. Each traversal through all the training
input and target vectors is called a pass.

The function train carries out such a loop of calculation. In each pass the
function train proceeds through the specified sequence of inputs, calculating
the output, error, and network adjustment for each input vector in the
sequence as the inputs are presented.

Note that train does not guarantee that the resulting network does its job. You
must check the new values of W and b by computing the network output for
each input vector to see if all targets are reached. If a network does not perform
successfully you can train it further by calling train again with the new
weights and biases for more training passes, or you can analyze the problem to
see if it is a suitable problem for the perceptron. Problems that cannot be solved
by the perceptron network are discussed in “Limitations and Cautions” on
page 3-20.

To illustrate the training procedure, work through a simple problem. Consider
a one-neuron perceptron with a single vector input having two elements:

Input  Perceptron Neuron

n»J: a>

NN J
= hardlim (Wp +b)

This network, and the problem you are about to consider, are simple enough
that you can follow through what is done with hand calculations if you want.
The problem discussed below follows that found in [HDB1996].
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Suppose you have the following classification problem and would like to solve
it with a single vector input, two-element perceptron network.

e g o e e

Use the initial weights and bias. Denote the variables at each step of this
calculation by using a number in parentheses after the variable. Thus, above,
the initial values are W(0) and 5(0).

W) =foof  b(0)=0

Start by calculating the perceptron’s output a for the first input vector pq,
using the initial weights and bias.

a = hardlim(W(0)p; +b(0))

= hardlim([o 0} B} +0j = hardlim(0) = 1

The output a does not equal the target value ¢;, so use the perceptron rule to
find the incremental changes to the weights and biases based on the error.
e=t;-a=0-1=-1

AW = epj = (-1)[2 9] = [-2 9]
Ab =e=(-1) = -1

You can calculate the new weights and bias using the perceptron update rules.

“rep” =00+ 29 = 29 = W)

Wnew — W

old
+

b = b e=0+(-1) = -1 =b(1)
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Now present the next input vector, ps. The output is calculated below.

a = hardlim(W(1)py+b(1))

= hardlim([_g _2] {_ﬂ —lj = hardlim(1) = 1

On this occasion, the target is 1, so the error is zero. Thus there are no changes
in weights or bias, so W(2) = W(1) = [_2 _2:| and p(2) = p(1) = -1.

You can continue in this fashion, presenting p3 next, calculating an output and
the error, and making changes in the weights and bias, etc. After making one
pass through all of the four inputs, you get the values W(4) = [_3 _1] and
b(4) = 0. To determine whether a satisfactory solution is obtained, make one
pass through all input vectors to see if they all produce the desired target
values. This is not true for the fourth input, but the algorithm does converge on
the sixth presentation of an input. The final values are

W(6) = [_2 _3} and b(6) = 1
This concludes the hand calculation. Now, how can you do this using the train

function?

The following code defines a perceptron like that shown in the previous figure,
with initial weights and bias values of 0.

net = newp([-2 2;-2 +2],1);

Consider the application of a single input.

p =[2; 2];
having the target
t =[0];

Set epochs to 1, so that train goes through the input vectors (only one here)
just one time.

net.trainParam.epochs = 1;
net = train(net,p,t);
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The new weights and bias are

w =

Thus, the initial weights and bias are 0, and after training on only the first
vector, they have the values [-2 -2] and -1, just as you hand calculated.

Now apply the second input vector p, . The output is 1, as it will be until the
weights and bias are changed, but now the target is 1, the error will be 0, and
the change will be zero. You could proceed in this way, starting from the
previous result and applying a new input vector time after time. But you can
do this job automatically with train.

Apply train for one epoch, a single pass through the sequence of all four input
vectors. Start with the network definition.

net = newp([-2 2;-2 +2],1);
net.trainParam.epochs = 1;

The input vectors and targets are
p = [[2;2] [1;-2] [-2;2] [-1;1]]
t =[01 0 1]

Now train the network with

net = train(net,p,t);

The new weights and bias are

W:

-3 -1
b =

0

Note that this is the same result as you got previously by hand. Finally,
simulate the trained network for each of the inputs.

a = sim(net,p)
a =
0 0 1 1
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The outputs do not yet equal the targets, so you need to train the network for
more than one pass. Try four epochs. This run gives the following results:

TRAINC, Epoch 0/20
TRAINC, Epoch 3/20
TRAINC, Performance goal met.

Thus, the network was trained by the time the inputs were presented on the
third epoch. (As you know from hand calculation, the network converges on the
presentation of the sixth input vector. This occurs in the middle of the second
epoch, but it takes the third epoch to detect the network convergence.) The final
weights and bias are

w =
-2 -3

1
The simulated output and errors for the various inputs are

a:

0 1.00 0 1.00
error = [a(1)-t(1) a(2)-t(2) a(3)-t(3) a(4)-t(4)]
error =

0 0 0 0

Thus you confirm that the training procedure was successful. The network
converges and produces the correct target outputs for the four input vectors.

The default training function for networks created with newp is trainc. (You
can find this by executing net.trainFcn.) This training function applies the
perceptron learning rule in its pure form, in that individual input vectors are
applied individually, in sequence, and corrections to the weights and bias are
made after each presentation of an input vector. Thus, perceptron training
with train will converge in a finite number of steps unless the problem
presented cannot be solved with a simple perceptron.

The function train can be used in various ways by other networks as well. Type
help train to read more about this basic function.

You might want to try various demonstration programs. For instance, demop1
illustrates classification and training of a simple perceptron.
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Limitations and Cautions

Perceptron networks should be trained with adapt, which presents the input
vectors to the network one at a time and makes corrections to the network
based on the results of each presentation. Use of adapt in this way guarantees
that any linearly separable problem is solved in a finite number of training
presentations.

As noted in the previous pages, perceptrons can also be trained with the
function train, which is discussed in detail in the next chapter. Commonly
when train is used for perceptrons, it presents the inputs to the network in
batches, and makes corrections to the network based on the sum of all the
individual corrections. Unfortunately, there is no proof that such a training
algorithm converges for perceptrons. On that account the use of train for
perceptrons is not recommended.

Perceptron networks have several limitations. First, the output values of a
perceptron can take on only one of two values (0 or 1) because of the hard-limit
transfer function. Second, perceptrons can only classify linearly separable sets
of vectors. If a straight line or a plane can be drawn to separate the input
vectors into their correct categories, the input vectors are linearly separable. If
the vectors are not linearly separable, learning will never reach a point where
all vectors are classified properly. However, it has been proven that if the
vectors are linearly separable, perceptrons trained adaptively will always find
a solution in finite time. You might want to try demop6. It shows the difficulty
of trying to classify input vectors that are not linearly separable.

It is only fair, however, to point out that networks with more than one
perceptron can be used to solve more difficult problems. For instance, suppose
that you have a set of four vectors that you would like to classify into distinct
groups, and that two lines can be drawn to separate them. A two-neuron
network can be found such that its two decision boundaries classify the inputs
into four categories. For additional discussion about perceptrons and to
examine more complex perceptron problems, see [HDB1996].

Outliers and the Normalized Perceptron Rule

Long training times can be caused by the presence of an outlier input vector
whose length is much larger or smaller than the other input vectors. Applying
the perceptron learning rule involves adding and subtracting input vectors
from the current weights and biases in response to error. Thus, an input vector
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with large elements can lead to changes in the weights and biases that take a
long time for a much smaller input vector to overcome. You might want to try
demop4 to see how an outlier affects the training.

By changing the perceptron learning rule slightly, you can make training times
insensitive to extremely large or small outlier input vectors.

Here is the original rule for updating weights:
AW = (t—a)pT = epT

As shown above, the larger an input vector p, the larger its effect on the weight
vector w. Thus, if an input vector is much larger than other input vectors, the
smaller input vectors must be presented many times to have an effect.

The solution is to normalize the rule so that the effect of each input vector on
the weights is of the same magnitude:
T T
AW = (t—a)L = eL
el ~lpl

The normalized perceptron rule is implemented with the function learnpn,
which is called exactly like 1learnp. The normalized perceptron rule function
learnpn takes slightly more time to execute, but reduces the number of epochs
considerably if there are outlier input vectors. You might try demop5 to see how
this normalized training rule works.
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Graphical User Interface

Introduction to the GUI

The graphical user interface (GUI) is designed to be simple and user friendly.
A simple example will get you started.

You bring up a GUI Network/Data Manager window. This window has its own
work area, separate from the more familiar command-line workspace. Thus,
when using the GUI, you might export the GUI results to the (command-line)
workspace. Similarly, you might want to import results from the workspace to
the GUI.

Once the Network/Data Manager window is up and running, you can create a
network, view it, train it, simulate it, and export the final results to the
workspace. Similarly, you can import data from the workspace for use in the
GUI.

The following example deals with a perceptron network. It goes through all the
steps of creating a network and shows what you might expect to see as you go
along.

Create a Perceptron Network (nntool)

Create a perceptron network to perform the AND function in this example. It
has an input vector p= [0 0 1 1;0 1 0 1] and a target vector t=[0 0 0 1].
Call the network ANDNet. Once created, the network will be trained. You can
then save the network, its output, etc., by exporting it to the workspace.

Input and Target
To start, type nntool. The following window appears.
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J Network/Data Manager

b Input Data: W Metworks #i| Output Data

® Target Data: 32 Error Data:

) Input Delay States: ) Layer Delay States:

I & Impant.. ] I e Mew l B Cpen... & Export X Delete

Click Help to get started on a new problem and to see descriptions of the
buttons and lists.

First, define the network input, called p, having the value [0 01 1;0 1 0 1].
Thus, the network has a two-element input, and four sets of such two-element
vectors are presented to it in training. To define this data, click New, and a new
window, Create Network or Data, appears. Select the Data tab. Set the Name
to p, the Value to [0 01 1;0 1 0 1], and make sure that Data Type is set to
Inputs.
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% Create Network or Data

Network| Data |

Name

p

Value Data Type
[0011; 010 1] @) Inputs

() Targets
O Input Delay States
() Layer Delay States
() Outputs

() Enars

I ¢ Create H @ Close ]

Click Create and then click OK to create an input p. The Network/Data
Manager window appears, and p shows as an input.

Next create a network target. This time enter the variable name t, specify the
value [0 0 0 1], and click Target under Data Type. Again click Create and
OK. You will see in the resulting Network/Data Manager window that you now
have t as a target as well as the previous p as an input.

Create Network

Now create a new network and call it ANDNet. Select the Network tab. Enter
ANDNet under Name. Set the Network Type to Perceptron, for that is the kind
of network you want to create.
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You can set the input ranges by entering numbers in that field, but it is easier
to get them from the particular input data that you want to use. To do this, click
the down arrow at the right side of Input Range. This pull-down menu shows
that you can get the input ranges from the file p. That is what you want to do,
so click p. This should lead to input ranges [0 1;0 1].

You need to use a hardlim transfer function and a 1earnp learning function, so
set those values using the arrows for Transfer function and Learning
function, respectively. By now your Create Network or Data window should
look like the following figure.

% Create Network or Data

Ietwork | Data

Name

| ANDNet |

Network Properties

MNetwork Type: | Perceptron V|

Input ranges: [O1,01] Get from input:

Mumber of neurons: 1

Transfer function: HARDLIM - »
Learning function: LEARNF  +

I ) view H % Restore Defaults ]

I ¢ Create H @ Close ]

Next you might look at the network by clicking View. For example,
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J View of New Network M=l B3

This picture shows that you are about to create a network with a single input
(composed of two elements), a hardlim transfer function, and a single output.
This is the perceptron network that you want.

Now click Create and OK to generate the network. Now close the Create
Network or Data window. You see the Network/Data Manager window with
ANDNet listed as a network.

Train the Perceptron

To train the network, click ANDNet to highlight it. Then click Open. This leads
to a new window, labeled Network: ANDNet. At this point you can see the

network again by clicking the View tab. You can also check on the initialization
by clicking the Initialize tab. Now click the Train tab. Specify the inputs and
output by clicking the Training Info tab and selecting p from the list of inputs
and t from the list of targets. The Network: ANDNet window should look like
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Network: ANDNet

Yiew| Train | Simulate | Adapt | Reinitialize Weights | ViewEdit Waights

Training Info | ‘alidation and Testing | Training Parameters

Training Data Training Results

Inputs p v Outputs ANDMet_outputs
Targets t v Errars ANDMet_errars

" Train MNetwark

Note that the contents of the Training Results Outputs and Errors fields
have the name ANDNet_ prefixed to them. This makes them easy to identify
later when they are exported to the workspace.

While you are here, click the Training Parameters tab. It shows you

parameters such as the epochs and error goal. You can change these
parameters at this point if you want.
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Click Train Network to train the perceptron network. You will see the
following training results.

) Training with TRAINC

Performance is 0, Goal is 0
1 T T T T T

Train
09r — Validation |

Test
08 .

0.7 .

0.6 .

05 .

04 .

Training-Blue Goal-Black

03 -

0.2 .

01 .

D L 1 L 1 L
0 1 2 3 4 5 6

Stop Training 6 Epochs

Thus, the network was trained to zero error in six epochs. (Other kinds of
networks commonly do not train to zero error, and their errors can cover a
much larger range. On that account, their errors are plotted on a log scale
rather than on a linear scale such as that used above for perceptrons.)

You can confirm that the trained network does indeed give zero error by using
the input p and simulating the network. To do this, go to the Network:
ANDNet window and click the Simulate tab. Use the Inputs menu to specify
p as the input, and label the output as ANDNet _outputsSim to distinguish it
from the training output. Click Simulate Network in the lower right corner
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and then click OK. Look at the Network/Data Manager and you will see a new
variable in the output: ANDNet outputsSim. Double-click it and a small
window, Data: ANDNet_outputsSim, appears with the value

[0O0O0 1]

Thus, the network does perform the AND of the inputs, giving a 1 as an output
only in this last case, when both inputs are 1. Close this window by clicking OK.

Export Perceptron Results to Workspace

To export the network outputs and errors to the MATLAB workspace, go back
to the Network/Data Manager window. The output and error for ANDNet are
listed in the Outputs and Errors fields on the right side. Next click Export.
This gives you an Export from Network/Data Manager window. Click
ANDNet_outputs and ANDNet_errors to highlight them, and then click the
Export button. These two variables now should be in the MATLAB workspace.
To confirm this, go to the command line and type who to see all the defined
variables. The result should be

who
Your variables are:
ANDNet_errors ANDNet_outputs

You might type ANDNet_ outputs and ANDNet_errors to obtain the following:

ANDNet_outputs =
0 0 0 1

and

ANDNet_errors =
0 0 0 0

You can export p, t, and ANDNet in a similar way. You might do this and check
using who to make sure that they got to the workspace.

Now that ANDNet is exported you can view the network description and
examine the network weight matrix. For instance, the command

ANDNet.iw{1,1}
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Similarly,
ANDNet.b{1}
yields

ans =

-3

Your network might yield a different result.

Clear Network/Data Window

You can clear the Network/Data Manager window by highlighting a variable
such as p and clicking the Delete button until all entries in the list boxes are
gone. By doing this, you start from a clean slate.

Alternatively, you can quit MATLAB. A restart with a new MATLAB, followed
by nntool, gives a clean Network/Data Manager window.

Recall however, that you exported p, t, etc., to the workspace from the
perceptron example. They are still there for your use even after you clear the
Network/Data Manager window.

Importing from the Command Line

To make things simple, quit MATLAB. Start it again, and type nntool to begin
a new session.

Create a new vector.

r=[0; 1; 2; 3]
r‘ =

wWw N =+ O
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Click Import and set the destination Name to r (to distinguish between the
variable named at the command line and the variable in the GUI). You will
have a window that looks like this:

> Import to Network/Data Manager

Source Select a Variable Destination

@Z' Irnpart frorm MATLAS workspace {no selection) MNarme

ANDMet_outputs
O Load from disk file A F ;

A ot As:

(@) Input Data

CZ' Target Data

() Initial Input States
(_:i' Initial Layer States
(_:Z' Output Data

() Error Data

I % Import H @ Close ]

Click Import and verify by looking at the Network/Data Manager window that
the variable r is there as an input.

Save a Variable to a File and Load It Later

Bring up the Network/Data Manager window and click New Network. Set the
name to mynet. Click Create. The network name mynet should appear in the
Network/Data Manager window. In this same window click Export. Select
mynet in the variable list of the Export or Save window and click Save. This
leads to the Save to a MAT File window. Save to the file mynetfile.

Now get rid of mynet in the GUI and retrieve it from the saved file. Go to the
Network/ Data Manager window, highlight mynet, and click Delete. Click
Import. This brings up the Import or Load to Network/Data Manager window.
Click the Load from Disk button and type mynetfile as the MAT-file Name.
Now click Browse. This brings up the Select MAT File window, with
mynetfile as an option that you can select as a variable to be imported.
Highlight mynetfile, click Open, and you return to the Import or Load to
Network/Data Manager window. On the Import As list, select Network.
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Highlight mynet and click Load to bring mynet to the GUIL. Now mynet is back
in the GUI Network/Data Manager window.

3-32



Linear Filters

Introduction (p. 4-2)

Neuron Model (p. 4-3)

Network Architecture (p. 4-4)
Least Mean Square Error (p. 4-8)

Linear System Design (newlind)
(p. 4-9)

Linear Networks with Delays (p. 4-10)

LMS Algorithm (learnwh) (p. 4-13)
Linear Classification (train) (p. 4-15)
Limitations and Cautions (p. 4-18)

Introduces the chapter

Provides a model of a linear neuron

Graphically displays linear network architecture
Discusses Least Mean Square Error supervised training

Discusses the linear system design function newlind

Introduces and graphically depicts tapped delay lines and
linear filters

Describes the Widrow-Hoff learning algorithm learnwh
Discusses the training function train

Describes the limitations of linear networks



4 Linear Filters

4-2

Introduction

The linear networks discussed in this chapter are similar to the perceptron, but
their transfer function is linear rather than hard-limiting. This allows their
outputs to take on any value, whereas the perceptron output is limited to either
0 or 1. Linear networks, like the perceptron, can only solve linearly separable
problems.

Here you design a linear network that, when presented with a set of given
input vectors, produces outputs of corresponding target vectors. For each input
vector, you can calculate the network’s output vector. The difference between
an output vector and its target vector is the error. You would like to find values
for the network weights and biases such that the sum of the squares of the
errors is minimized or below a specific value. This problem is manageable
because linear systems have a single error minimum. In most cases, you can
calculate a linear network directly, such that its error is a minimum for the
given input vectors and target vectors. In other cases, numerical problems
prohibit direct calculation. Fortunately, you can always train the network to
have a minimum error by using the least mean squares (Widrow-Hoff)
algorithm.

This chapter introduces newlin, a function that creates a linear layer, and
newlind, a function that designs a linear layer for a specific purpose.

You can type help linnet to see a list of linear network functions,
demonstrations, and applications.

The use of linear filters in adaptive systems is discussed in Chapter 10,
“Adaptive Filters and Adaptive Training.”
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Neuron Model

A linear neuron with R inputs is shown below.

Linear Neuron with
Input Vector Input

A\
Where...

R = number of

S HFPA—»  elementsin

input vector
Wl R lb

U J
a = purelin(Wp+b)

This network has the same basic structure as the perceptron. The only
difference is that the linear neuron uses a linear transfer function called
purelin.

"""""" A

a = purelin(n)

Linear Transfer Function

The linear transfer function calculates the neuron’s output by simply returning
the value passed to it.

a = purelin(n) = purelin(Wp+b) = Wp+b

This neuron can be trained to learn an affine function of its inputs, or to find a
linear approximation to a nonlinear function. A linear network cannot, of
course, be made to perform a nonlinear computation.
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Network Architecture

The linear network shown below has one layer of S neurons connected to R

inputs through a matrix of weights W.

Layer of Linear
Input Neurons

a= purelin(Wp +b)

Input Layer of Linear Neurons

R Sx1 S
/| J
a= purelin(Wp +b)
Where... R = number of
elements in

input vector

S = number of
neurons in layer

Note that the figure on the right defines an S-length output vector a.

A single-layer linear network is shown. However, this network is just as
capable as multilayer linear networks. For every multilayer linear network,
there is an equivalent single-layer linear network.

Creating a Linear Neuron (newlin)
Consider a single linear neuron with two inputs. The diagram for this network

is shown below.
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Input Simple Linear Network

( \ A\
p, Wi
> > H A
pz lez lb
| J

a = purelin(Wp+b)

The weight matrix W in this case has only one row. The network output is
a = purelin(n) = purelin(Wp+b) = Wp+b

or
a = wjy 1P+ Wy Py +b

Like the perceptron, the linear network has a decision boundary that is
determined by the input vectors for which the net input n is zero. For n = 0 the
equation Wp + b = 0 specifies such a decision boundary, as shown below
(adapted with thanks from [HDB96]).

pZ

a<0 \L a>0
-b/wI ,

’ W

|_»
Wp+b=0

- 171
-b/wl\

Input vectors in the upper right gray area lead to an output greater than 0.
Input vectors in the lower left white area lead to an output less than 0. Thus,
the linear network can be used to classify objects into two categories. However,
it can classify in this way only if the objects are linearly separable. Thus, the
linear network has the same limitation as the perceptron.
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You can create a network like that shown with the command

net = newlin( [-1 1; -1 1],1);

The first matrix of arguments specifies the range of the two scalar inputs. The
last argument, 1, says that the network has a single output.

The network weights and biases are set to zero by default. You can see the
current values with the commands

W = net.IW{1,1}
W =
0 0
and
b= net.b{1}
b:
0

However, you can give the weights any values that you want, such as 2 and 3,
respectively, with
net.IW{1,1} = [2 3];
W = net.IW{1,1}
W =
2 3

You can set and check the bias in the same way.

net.b{1} =[-4];
b = net.b{1}
b -
-4
You can simulate the linear network for a particular input vector. Try
p = [5;6];

You can find the network output with the function sim.

a
a:
24

sim(net,p)
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To summarize, you can create a linear network with newlin, adjust its
elements as you want, and simulate it with sim. You can find more about
newlin by typing help newlin.
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4-8

Least Mean Square Error

Like the perceptron learning rule, the least mean square error (LMS)
algorithm is an example of supervised training, in which the learning rule is
provided with a set of examples of desired network behavior:

{pl’tl} ,{pz,tz} s ;{prtQ}

Here p, is an input to the network, and t  is the corresponding target output.
q. . . .

As each input is applied to the network, the network output is compared to the

target. The error is calculated as the difference between the target output and

the network output. The goal is to minimize the average of the sum of these

errors.

Q Q
1 2 1 2
mse = ékz e(k)” = ékz (t(k)—a(k))
=1 =1

The LMS algorithm adjusts the weights and biases of the linear network so as
to minimize this mean square error.

Fortunately, the mean square error performance index for the linear network
is a quadratic function. Thus, the performance index will either have one global
minimum, a weak minimum, or no minimum, depending on the characteristics
of the input vectors. Specifically, the characteristics of the input vectors
determine whether or not a unique solution exists.

You can find more about this topic in Chapter 10 of [HDB96].
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Linear System Design (newlind)

Unlike most other network architectures, linear networks can be designed
directly if input/target vector pairs are known. You can obtain specific network
values for weights and biases to minimize the mean square error by using the
function newlind.

Suppose that the inputs and targets are

P=1[123];
T= [2.0 4.1 5.9];

Now you can design a network.
net = newlind(P,T);

You can simulate the network behavior to check that the design was done

properly.
Y = sim(net,P)
Y =

2.0500 4.0000 5.9500

Note that the network outputs are quite close to the desired targets.

You might try demolini. It shows error surfaces for a particular problem,
illustrates the design, and plots the designed solution.

You can also use the function newlind to design linear networks having delays
in the input. Such networks are discussed in “Linear Networks with Delays” on
page 4-10. First, however, delays must be discussed.
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Linear Networks with Delays

Tapped Delay Line

You need a new component, the tapped delay line, to make full use of the linear
network. Such a delay line is shown below. There the input signal enters from
the left and passes through N-1 delays. The output of the tapped delay line
(TDL) is an N-dimensional vector, made up of the input signal at the current
time, the previous input signal, etc.

jq
@)
=

pd (k)

pd (k)

T=G

pd, (k)

(

Linear Filter

You can combine a tapped delay line with a linear network to create the linear
filter shown.

4-10



Linear Networks with Delays

TDL Linear Layer
'R e N
pd (k)
pk) ®
l Wl.l
D pd (k)
p(k-1) i— OIS
W1,2 Z »74
s [
¢ 1
]B_ ACYAR
—/ N J
N
The output of the filter is given by
a(k) = purelin(Wp +b) = Z wl’ia(k —i+1)+5b
i=1

The network shown is referred to in the digital signal processing field as a
finite impulse response (FIR) filter [WiSt85]. Look at the code used to generate
and simulate such a network.

Suppose that you want a linear layer that outputs the sequence T, given the
sequence P and two initial input delay states Pi.

P={121332)}
Pi = {1 3};
T ={564207 8};
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You can use newlind to design a network with delays to give the appropriate
outputs for the inputs. The delay initial outputs are supplied as a third
argument, as shown below.

net = newlind(P,T,Pi);

You can obtain the output of the designed network with
Y = sim(net,P,Pi)
to give
Y = [2.73] [10.54] [5.01] [14.95] [10.78] [5.98]

As you can see, the network outputs are not exactly equal to the targets, but
they are reasonably close, and in any case, the mean square error is minimized.

4-12



LMS Algorithm (learnwh)

LMS Algorithm (learnwh)

The LMS algorithm, or Widrow-Hoff learning algorithm, is based on an
approximate steepest descent procedure. Here again, linear networks are
trained on examples of correct behavior.

Widrow and Hoff had the insight that they could estimate the mean square
error by using the squared error at each iteration. If you take the partial
derivative of the squared error with respect to the weights and biases at the kth
iteration, you have

2
de"(k) _ 2e(k)aeik!
awl’j Bwl’j

forj =1,2,...,R and

2
de” (k) _ de(k)
o - ey

Next look at the partial derivative with respect to the error.

de(k) _ dtk)—a(k)] _
Bwl,j awl’j

9 [t(k)— (Wp(k) +b)]
1,

or

de(k) _ 0 {uk)—[ z:uquAk)+é“

dwy j  dwy ; .
i=1

Here p;(k) is the ith element of the input vector at the kth iteration.
This can be simplified to

de(k) _ . 1

awl,j pJ( )
and

de(k) _ 4

b

Finally, change the weight matrix, and the bias will be
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20e(k)p(k)
and
20e(k)

These two equations form the basis of the Widrow-Hoff (LMS) learning
algorithm.

These results can be extended to the case of multiple neurons, and written in

matrix form as

W(k +1) = W(k) + 2aek)p_ (k)
b(k+1) = b(k) +20e(k)

Here the error e and the bias b are vectors, and o is a learning rate. If o is
large, learning occurs quickly, but if it is too large it can lead to instability and
errors might even increase. To ensure stable learning, the learning rate must
be less than the reciprocal of the largest eigenvalue of the correlation matrix
pr of the input vectors.

You might want to read some of Chapter 10 of [HDB96] for more information
about the LMS algorithm and its convergence.

Fortunately there is a toolbox function, learnwh, that does all the calculation
for you. It calculates the change in weights as

dw = lr*e*p'
and the bias change as
db = 1r*e
The constant 2, shown a few lines above, has been absorbed into the code

learning rate 1r. The function maxlinlr calculates this maximum stable
learning rate 1r as 0.999 * P' *P,

Type help learnwh and help maxlinlr for more details about these two
functions.
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Linear Classification (train)

Linear networks can be trained to perform linear classification with the
function train. This function applies each vector of a set of input vectors and
calculates the network weight and bias increments due to each of the inputs
according to learnp. Then the network is adjusted with the sum of all these
corrections. Each pass through the input vectors is called an epoch. This
contrasts with adapt, discussed in Chapter 10, “Adaptive Filters and Adaptive
Training,” which adjusts weights for each input vector as it is presented.

Finally, train applies the inputs to the new network, calculates the outputs,
compares them to the associated targets, and calculates a mean square error.
If the error goal is met, or if the maximum number of epochs is reached, the
training is stopped, and train returns the new network and a training record.
Otherwise train goes through another epoch. Fortunately, the LMS algorithm
converges when this procedure is executed.

A simple problem illustrates this procedure. Consider the linear network
introduced earlier.

Input Simple Linear Network

e ~\
p, i
> Sy
pz W1.2 lb
U Y

a = purelin(Wp+b)

Suppose you have the classification problem presented in “Linear Filters” on
page 4-1.

o= henmo oo [3fre1} o= [B)a=o oue1a-1)

Here there are four input vectors, and you want a network that produces the
output corresponding to each input vector when that vector is presented.
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Use train to get the weights and biases for a network that produces the correct
targets for each input vector. The initial weights and bias for the new network
are 0 by default. Set the error goal to 0.1 rather than accept its default of 0.

P [21 -2 -1;2 -2 2 1];

t [0101];

net = newlin( [-2 2; -2 2],1);
net.trainParam.goal= 0.1;
[net, tr] = train(net,P,t);

The problem runs, producing the following training record.

TRAINB, Epoch 0/100, MSE 0.5/0.1.
TRAINB, Epoch 25/100, MSE 0.181122/0.1.
TRAINB, Epoch 50/100, MSE 0.111233/0.1.
TRAINB, Epoch 64/100, MSE 0.0999066/0.1.
TRAINB, Performance goal met.

Thus, the performance goal is met in 64 epochs. The new weights and bias are

weights = net.iw{1,1}
weights =
-0.0615 -0.2194
bias = net.b(1)
bias =
[0.5899]

You can simulate the new network as shown below.

A = sim(net, P)
A =
0.0282 0.9672 0.2741 0.4320

You can also calculate the error.

err = t - sim(net,P)
err =
-0.0282 0.0328 -0.2741 0.5680

Note that the targets are not realized exactly. The problem would have run
longer in an attempt to get perfect results had a smaller error goal been chosen,
but in this problem it is not possible to obtain a goal of 0. The network is limited
in its capability. See “Limitations and Cautions” on page 4-18 for examples of
various limitations.
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This demonstration program, demolin2, shows the training of a linear neuron
and plots the weight trajectory and error during training.

You might also try running the demonstration program nnd101c. It addresses
a classic and historically interesting problem, shows how a network can be
trained to classify various patterns, and shows how the trained network
responds when noisy patterns are presented.
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Limitations and Cautions

Linear networks can only learn linear relationships between input and output
vectors. Thus, they cannot find solutions to some problems. However, even if a
perfect solution does not exist, the linear network will minimize the sum of
squared errors if the learning rate 1r is sufficiently small. The network will
find as close a solution as is possible given the linear nature of the network’s
architecture. This property holds because the error surface of a linear network
is a multidimensional parabola. Because parabolas have only one minimum, a
gradient descent algorithm (such as the LMS rule) must produce a solution at
that minimum.

Linear networks have various other limitations. Some of them are discussed
below.

Overdetermined Systems

Consider an overdetermined system. Suppose that you have a network to be
trained with four one-element input vectors and four targets. A perfect solution
towp + b = t for each of the inputs might not exist, for there are four
constraining equations, and only one weight and one bias to adjust. However,
the LMS rule still minimizes the error. You might try demolin4 to see how this
is done.

Underdetermined Systems

Consider a single linear neuron with one input. This time, in demolin5, train
it on only one one-element input vector and its one-element target vector:

P [+1.0];
T = [+0.5];

Note that while there is only one constraint arising from the single input/target
pair, there are two variables, the weight and the bias. Having more variables
than constraints results in an underdetermined problem with an infinite
number of solutions. You can try demolin5 to explore this topic.

Linearly Dependent Vectors

Normally it is a straightforward job to determine whether or not a linear
network can solve a problem. Commonly, if a linear network has at least as
many degrees of freedom (S*R+S = number of weights and biases) as



Limitations and Cautions

constraints (@ = pairs of input/target vectors), then the network can solve the
problem. This is true except when the input vectors are linearly dependent and
they are applied to a network without biases. In this case, as shown with
demonstration demolin6, the network cannot solve the problem with zero
error. You might want to try demolin6.

Too Large a Learning Rate

You can always train a linear network with the Widrow-Hoff rule to find the
minimum error solution for its weights and biases, as long as the learning rate
is small enough. Demonstration demolin7 shows what happens when a neuron
with one input and a bias is trained with a learning rate larger than that
recommended by max1linlr. The network is trained with two different learning
rates to show the results of using too large a learning rate.
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Introduction

Backpropagation was created by generalizing the Widrow-Hoff learning rule to
multiple-layer networks and nonlinear differentiable transfer functions. Input
vectors and the corresponding target vectors are used to train a network until
it can approximate a function, associate input vectors with specific output
vectors, or classify input vectors in an appropriate way as defined by you.
Networks with biases, a sigmoid layer, and a linear output layer are capable of
approximating any function with a finite number of discontinuities.

Standard backpropagation is a gradient descent algorithm, as is the
Widrow-Hoff learning rule, in which the network weights are moved along the
negative of the gradient of the performance function. The term
backpropagation refers to the manner in which the gradient is computed for
nonlinear multilayer networks. There are a number of variations on the basic
algorithm that are based on other standard optimization techniques, such as
conjugate gradient and Newton methods. Neural Network Toolbox implements
a number of these variations. This chapter explains how to use each of these
routines and discusses the advantages and disadvantages of each.

Properly trained backpropagation networks tend to give reasonable answers
when presented with inputs that they have never seen. Typically, a new input
leads to an output similar to the correct output for input vectors used in
training that are similar to the new input being presented. This generalization
property makes it possible to train a network on a representative set of
input/target pairs and get good results without training the network on all
possible input/output pairs. There are two features of Neural Network Toolbox
that are designed to improve network generalization: regularization and early
stopping. These features and their use are discussed in “Improving
Generalization” on page 5-51.

This chapter also discusses preprocessing and postprocessing techniques,
which can improve the efficiency of network training, in “Preprocessing and
Postprocessing” on page 5-61.

Before beginning this chapter you may want to read a basic reference on
backpropagation, such as D.E Rumelhart, G.E. Hinton, and R.J. Williams,
“Learning internal representations by error propagation,” D.E. Rumelhart and
J. McClelland, editors, Parallel Data Processing, Vol.1, Chapter 8, The M.L.T.
Press, Cambridge, MA, 1986, pp. 318-362. This subject is also covered in detail
in Chapters 11 and 12 of M.T. Hagan, H.B. Demuth, and M.H. Beale, Neural
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Network Design, ISBN 0-9717321-0-8 (available from John Stovall,
john.stovall@colorado.edu, 303.492.3648).

The primary objective of this chapter is to explain how to use the
backpropagation training functions in the toolbox to train feedforward neural
networks to solve specific problems. There are generally four steps in the
training process:

1 Assemble the training data.
2 Create the network object.
3 Train the network.

4 Simulate the network response to new inputs.
This chapter discusses a number of different training functions, but using each
function generally follows these four steps.

The next section, “Architecture,” describes the basic feedforward network
structure and demonstrates how to create a feedforward network object. Then
the simulation and training of the network objects are presented.
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Architecture

This section presents the architecture of the network that is most commonly
used with the backpropagation algorithm — the multilayer feedforward
network.

Neuron Model (logsig, tansig, purelin)

An elementary neuron with R inputs is shown below. Each input is weighted
with an appropriate w. The sum of the weighted inputs and the bias forms the
input to the transfer function f. Neurons can use any differentiable transfer
function f to generate their output.

Input  General Neuron

Where

n u R = number of
> f > elements in
input vector

U J
a=f(Wp +b)

Multilayer networks often use the log-sigmoid transfer function logsig.

S

a = logsig(n)
Log-Sigmoid Transfer Function

The function logsig generates outputs between 0 and 1 as the neuron’s net
input goes from negative to positive infinity.
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Alternatively, multilayer networks can use the tan-sigmoid transfer function
tansig.

a = tansig(n)

Tan-Sigmoid Transfer Function

Occasionally, the linear transfer function purelin is used in backpropagation
networks.

"""""" V. =

a = purelin(n)

Linear Transfer Function

If the last layer of a multilayer network has sigmoid neurons, then the outputs
of the network are limited to a small range. If linear output neurons are used
the network outputs can take on any value.

In backpropagation it is important to be able to calculate the derivatives of any
transfer functions used. Each of the transfer functions above, logsig, tansig,
and purelin, can be called to calculate its own derivative. To calculate a
transfer function’s derivative, call the transfer function with the string 'dn".

dn = tansig('dn',n,a)

The three transfer functions described here are the most commonly used
transfer functions for backpropagation, but other differentiable transfer
functions can be created and used with backpropagation if desired. See
Chapter 12, “Advanced Topics.”
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Feedforward Network

A single-layer network of S 1ogsig neurons having R inputs is shown below in
full detail on the left and with a layer diagram on the right.

Layer of logsig
Input Neurons Input Layer of logsig Neurons

a= logsig(Wp+b)

Where... R = number of
elements in
input vector

S = number of
a=logsig(Wp+b) neurons in layer

Feedforward networks often have one or more hidden layers of sigmoid
neurons followed by an output layer of linear neurons. Multiple layers of
neurons with nonlinear transfer functions allow the network to learn nonlinear
and linear relationships between input and output vectors. The linear output
layer lets the network produce values outside the range —1 to +1.

On the other hand, if you want to constrain the outputs of a network (such as
between 0 and 1), then the output layer should use a sigmoid transfer function
(such as logsig).

As noted in Chapter 2, “Neuron Model and Network Architectures,” for
multiple-layer networks the number of layers determines the superscript on
the weight matrices. The appropriate notation is used in the two-layer
tansig/purelin network shown next.
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Input Hidden Layer Output Layer
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This network can be used as a general function approximator. It can
approximate any function with a finite number of discontinuities arbitrarily
well, given sufficient neurons in the hidden layer.

Creating a Network (newff)

The first step in training a feedforward network is to create the network object.
The function newff creates a feedforward network. It requires four inputs and
returns the network object. The first input is an R-by-2 matrix of minimum and
maximum values for each of the R elements of the input vector. The second
input is an array containing the sizes of each layer. The third input is a cell
array containing the names of the transfer functions to be used in each layer.
The final input contains the name of the training function to be used.

For example, the following command creates a two-layer network. There is one
input vector with two elements. The values for the first element of the input
vector range between -1 and 2, and the values of the second element of the
input vector range between 0 and 5. There are three neurons in the first layer
and one neuron in the second (output) layer. The transfer function in the first
layer is tan-sigmoid, and the output layer transfer function is linear. The
training function is traingd (described in “Batch Gradient Descent (traingd)”
on page 5-11).

net=newff([-1 2; 0 5],[3,1],{'tansig"', 'purelin'}, 'traingd');
This command creates the network object and also initializes the weights and

biases of the network; therefore the network is ready for training. There are
times when you might want to reinitialize the weights, or to perform a custom

initialization. The next section explains the details of the initialization process.

5-7



S5 Backpropagation

5-8

Initializing Weights (init)

Before training a feedforward network, you must initialize the weights and
biases. The newff command automatically initializes the weights, but you
might want to reinitialize them. You do this with the init command. This
function takes a network object as input and returns a network object with all
weights and biases initialized. Here is how a network is initialized (or
reinitialized):

net = init(net);

For specifics on how the weights are initialized, see Chapter 12, “Advanced
Topics.”



Simulation (sim)

Simulation (sim)

The function sim simulates a network. sim takes the network input p and the
network object net and returns the network outputs a. You can use sim to
simulate the network created above for a single input vector:

p=11;2];
a = sim(net,p)
a =

-0.1011

(If you try these commands, your output might be different, depending on the
state of your random number generator when the network was initialized.)
Below, sim is called to calculate the outputs for a concurrent set of three input
vectors. This is the batch mode form of simulation, in which all the input
vectors are placed in one matrix. This is much more efficient than presenting
the vectors one at a time.

p=1[132;241];
a=sim(net,p)
a =

-0.1011 -0.2308 0.4955
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Training

Once the network weights and biases are initialized, the network is ready for
training. The network can be trained for function approximation (nonlinear
regression), pattern association, or pattern classification. The training process
requires a set of examples of proper network behavior — network inputs p and
target outputs t. During training the weights and biases of the network are
iteratively adjusted to minimize the network performance function
net.performfFcn. The default performance function for feedforward networks
is mean square error mse — the average squared error between the network
outputs a and the target outputs t.

The remainder of this chapter describes several different training algorithms
for feedforward networks. All these algorithms use the gradient of the
performance function to determine how to adjust the weights to minimize
performance. The gradient is determined using a technique called
backpropagation, which involves performing computations backward through
the network. The backpropagation computation is derived using the chain rule
of calculus and is described in Chapter 11 of [HDB96].

The basic backpropagation training algorithm, in which the weights are moved
in the direction of the negative gradient, is described in the next section. Later
sections describe more complex algorithms that increase the speed of
convergence.

Backpropagation Algorithm

There are many variations of the backpropagation algorithm, several of which
are described in this chapter. The simplest implementation of backpropagation
learning updates the network weights and biases in the direction in which the
performance function decreases most rapidly, the negative of the gradient. One
iteration of this algorithm can be written

Xpr1 = Xp— 018

where X, is a vector of current weights and biases, g, is the current gradient,
and o, is the learning rate.

There are two different ways in which this gradient descent algorithm can be
implemented: incremental mode and batch mode. In incremental mode, the

gradient is computed and the weights are updated after each input is applied
to the network. In batch mode, all the inputs are applied to the network before
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the weights are updated. The next section describes the batch mode of training;
incremental training is discussed in a later chapter.

Batch Training (train)

In batch mode the weights and biases of the network are updated only after the
entire training set has been applied to the network. The gradients calculated
at each training example are added together to determine the change in the
weights and biases. For a discussion of batch training with the
backpropagation algorithm, see page 12-7 of [HDB96].

Batch Gradient Descent (traingd)

The batch steepest descent training function is traingd. The weights and
biases are updated in the direction of the negative gradient of the performance
function. If you want to train a network using batch steepest descent, you
should set the network trainFcn to traingd, and then call the function train.
There is only one training function associated with a given network.

There are seven training parameters associated with traingd:

® epochs

® show

® goal

® time

® min_grad
® max_fail
e 1lr

The learning rate 1r is multiplied times the negative of the gradient to
determine the changes to the weights and biases. The larger the learning rate,
the bigger the step. If the learning rate is made too large, the algorithm
becomes unstable. If the learning rate is set too small, the algorithm takes a
long time to converge. See page 12—8 of [HDB96] for a discussion of the choice
of learning rate.

The training status is displayed for every show iterations of the algorithm. (If
show is set to NaN, then the training status is never displayed.) The other
parameters determine when the training stops. The training stops if the
number of iterations exceeds epochs, if the performance function drops below
goal, if the magnitude of the gradient is less than mingrad, or if the training
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time is longer than time seconds. max_fail, which is associated with the early
stopping technique, is discussed in “Improving Generalization” on page 5-51.

The following code creates a training set of inputs p and targets t. For batch
training, all the input vectors are placed in one matrix.

-1 22;0 5 0 5];
11 1];

p=1-1
t = [-1
Create the feedforward network. Here the function minmax is used to determine
the range of the inputs to be used in creating the network.

net=newff (minmax(p),[3,1],{ 'tansig', 'purelin'}, 'traingd');

At this point, you might want to modify some of the default training
parameters.

net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;

If you want to use the default training parameters, the preceding commands
are not necessary.

Now you are ready to train the network.

[net,tr]=train(net,p,t);

TRAINGD, Epoch 0/300, MSE 1.59423/1e-05, Gradient
2.76799/1e-10

TRAINGD, Epoch 50/300, MSE 0.00236382/1e-05, Gradient
0.0495292/1e-10

TRAINGD, Epoch 100/300, MSE 0.000435947/1e-05, Gradient
0.0161202/1e-10

TRAINGD, Epoch 150/300, MSE 8.68462e-05/1e-05, Gradient
0.00769588/1e-10

TRAINGD, Epoch 200/300, MSE 1.45042e-05/1e-05, Gradient
0.00325667/1e-10

TRAINGD, Epoch 211/300, MSE 9.64816e-06/1e-05, Gradient
0.00266775/1e-10

TRAINGD, Performance goal met.

The training record tr contains information about the progress of training. An
example of its use is given in “Sample Training Session” on page 5-67.
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Now you can simulate the trained network to obtain its response to the inputs
in the training set.

a = sim(net,p)
a -
-1.0010 -0.9989 1.0018 0.9985

Try the Neural Network Design demonstration nnd12sd1[HDB96] for an
illustration of the performance of the batch gradient descent algorithm.

Batch Gradient Descent with Momentum (traingdm)

In addition to traingd, there is another batch algorithm for feedforward
networks that often provides faster convergence: traingdm, steepest descent
with momentum. Momentum allows a network to respond not only to the local
gradient, but also to recent trends in the error surface. Acting like a lowpass
filter, momentum allows the network to ignore small features in the error
surface. Without momentum a network can get stuck in a shallow local
minimum. With momentum a network can slide through such a minimum. See
page 12-9 of [HDB96] for a discussion of momentum.

You can add momentum to backpropagation learning by making weight
changes equal to the sum of a fraction of the last weight change and the new
change suggested by the backpropagation rule. The magnitude of the effect
that the last weight change is allowed to have is mediated by a momentum
constant, mc, which can be any number between 0 and 1. When the momentum
constant is 0, a weight change is based solely on the gradient. When the
momentum constant is 1, the new weight change is set to equal the last weight
change and the gradient is simply ignored. The gradient is computed by
summing the gradients calculated at each training example, and the weights
and biases are only updated after all training examples have been presented.

If the new performance function on a given iteration exceeds the performance
function on a previous iteration by more than a predefined ratio,
max_perf_inc, (typically 1.04), the new weights and biases are discarded, and
the momentum coefficient mc is set to zero.

The batch form of gradient descent with momentum is invoked using the
training function traingdm. The traingdm function is invoked using the same
steps shown above for the traingd function, except that you can set the mc, 1r,
and max_perf_inc learning parameters.
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The following code recreates the previous network and retrains it using
gradient descent with momentum. The training parameters for traingdm are
the same as those for traingd, with the addition of the momentum factor mc
and the maximum performance increase max_perf_inc. (The training
parameters are reset to the default values whenever net.trainFcn is set to
traingdm.)

p=1[-1-122;0505];
t=1-1-111];
net=newff (minmax(p),[3,1],{ 'tansig’', 'purelin'}, 'traingdm');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);
TRAINGDM, Epoch 0/300, MSE 3.6913/1e-05, Gradient
4.54729/1e-10
TRAINGDM, Epoch 50/300, MSE 0.00532188/1e-05, Gradient
0.213222/1e-10
TRAINGDM, Epoch 100/300, MSE 6.34868e-05/1e-05, Gradient
0.0409749/1e-10
TRAINGDM, Epoch 114/300, MSE 9.06235e-06/1e-05, Gradient
0.00908756/1e-10
TRAINGDM, Performance goal met.
sim(net,p)

Q
1}

-1.0026 -1.0044 0.9969 0.9992

Note that because you reinitialized the weights and biases before training (by
calling newff again), you obtain a different mean square error than you did
using traingd. If you were to reinitialize and train again using traingdm, you
would get yet a different mean square error. The random choice of initial
weights and biases will affect the performance of the algorithm. If you want to
compare the performance of different algorithms, test each using several
different sets of initial weights and biases. You might want to use
net=init(net) to reinitialize the weights, rather than recreating the entire
network with newff.

Try the Neural Network Design demonstration nnd12mo [HDB96] for an
illustration of the performance of the batch momentum algorithm.
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Faster Training

The previous section presented two backpropagation training algorithms:
gradient descent, and gradient descent with momentum. These two methods
are often too slow for practical problems. This section discusses several
high-performance algorithms that can converge from ten to one hundred times
faster than the algorithms discussed previously. All the algorithms in this
section operate in batch mode and are invoked using train.

These faster algorithms fall into two categories. The first category uses
heuristic techniques, which were developed from an analysis of the
performance of the standard steepest descent algorithm. One heuristic
modification is the momentum technique, which was presented in the previous
section. This section discusses two more heuristic techniques: variable learning
rate backpropagation, traingda, and resilient backpropagation, trainrp.

The second category of fast algorithms uses standard numerical optimization
techniques. (See Chapter 9 of [HDB96] for a review of basic numerical
optimization.) Later sections present three types of numerical optimization
techniques for neural network training:

Conjugate gradient (traincgf, “Conjugate Gradient Algorithms” on
traincgp, traincgb, trainscg page 5-18
Quasi-Newton (trainbfg, trainoss) “Quasi-Newton Algorithms” on
page 5-27
Levenberg-Marquardt (trainlm) “Levenberg-Marquardt (trainlm)” on
page 5-29

Variable Learning Rate (traingda, traingdx)

With standard steepest descent, the learning rate is held constant throughout
training. The performance of the algorithm is very sensitive to the proper
setting of the learning rate. If the learning rate is set too high, the algorithm
can oscillate and become unstable. If the learning rate is too small, the
algorithm takes too long to converge. It is not practical to determine the
optimal setting for the learning rate before training, and, in fact, the optimal
learning rate changes during the training process, as the algorithm moves
across the performance surface.
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You can improve the performance of the steepest descent algorithm if you allow
the learning rate to change during the training process. An adaptive learning
rate attempts to keep the learning step size as large as possible while keeping
learning stable. The learning rate is made responsive to the complexity of the
local error surface.

An adaptive learning rate requires some changes in the training procedure
used by traingd. First, the initial network output and error are calculated. At
each epoch new weights and biases are calculated using the current learning
rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a
predefined ratio, max_perf_inc (typically 1.04), the new weights and biases are
discarded. In addition, the learning rate is decreased (typically by multiplying
by 1r_dec =0.7). Otherwise, the new weights, etc., are kept. If the new error is
less than the old error, the learning rate is increased (typically by multiplying
by 1r_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the
network can learn without large error increases. Thus, a near-optimal learning
rate is obtained for the local terrain. When a larger learning rate could result
in stable learning, the learning rate is increased. When the learning rate is too
high to guarantee a decrease in error, it is decreased until stable learning
resumes.

Try the Neural Network Design demonstration nnd12vl [HDB96] for an
illustration of the performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is implemented with
the function traingda, which is called just like traingd, except for the
additional training parameters max_perf_inc, 1r_dec, and 1r_inc. Here is
how it is called to train the previous two-layer network:

p=1[-1-122;050 5];

t=1-1-111];

net=newff (minmax(p),[3,1],{ 'tansig', 'purelin'}, 'traingda');
net.trainParam.show = 50;

net.trainParam.lr = 0.05;

net.trainParam.lr_inc = 1.05;

net.trainParam.epochs = 300;

net.trainParam.goal = 1e-5;

[net,tr]=train(net,p,t);
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TRAINGDA, Epoch 0/300, MSE 1.71149/1e-05, Gradient
2.6397/1e-06

TRAINGDA, Epoch 44/300, MSE 7.47952e-06/1e-05, Gradient
0.00251265/1e-06

TRAINGDA, Performance goal met.
a = sim(net,p)

-1.0036 -0.9960 1.0008 0.9991

The function traingdx combines adaptive learning rate with momentum
training. It is invoked in the same way as traingda, except that it has the
momentum coefficient mc as an additional training parameter.

Resilient Backpropagation (trainrp)

Multilayer networks typically use sigmoid transfer functions in the hidden
layers. These functions are often called “squashing” functions, because they
compress an infinite input range into a finite output range. Sigmoid functions
are characterized by the fact that their slopes must approach zero as the input
gets large. This causes a problem when you use steepest descent to train a
multilayer network with sigmoid functions, because the gradient can have a
very small magnitude and, therefore, cause small changes in the weights and
biases, even though the weights and biases are far from their optimal values.

The purpose of the resilient backpropagation (Rprop) training algorithm is to
eliminate these harmful effects of the magnitudes of the partial derivatives.
Only the sign of the derivative is used to determine the direction of the weight
update; the magnitude of the derivative has no effect on the weight update. The
size of the weight change is determined by a separate update value. The update
value for each weight and bias is increased by a factor delt inc whenever the
derivative of the performance function with respect to that weight has the same
sign for two successive iterations. The update value is decreased by a factor
delt dec whenever the derivative with respect to that weight changes sign
from the previous iteration. If the derivative is zero, then the update value
remains the same. Whenever the weights are oscillating, the weight change is
reduced. If the weight continues to change in the same direction for several
iterations, then the magnitude of the weight change increases. A complete
description of the Rprop algorithm is given in [ReBr93].

The following code recreates the previous network and trains it using the
Rprop algorithm. The training parameters for trainrp are epochs, show, goal,
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time, min_grad, max_fail, delt_inc, delt_dec, delta0, and deltamax. The
first eight parameters have been previously discussed. The last two are the
initial step size and the maximum step size, respectively. The performance of
Rprop is not very sensitive to the settings of the training parameters. For the
example below, most of the training parameters are left at the default values.
show is reduced below its previous value, because Rprop generally converges
much faster than the previous algorithms.

p=1[-1-122;0505];
t=1-1-111];
net=newff (minmax(p),[3,1],{ 'tansig’', 'purelin'}, 'trainrp');
net.trainParam.show = 10;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);
TRAINRP, Epoch 0/300, MSE 0.469151/1e-05, Gradient
1.4258/1e-06
TRAINRP, Epoch 10/300, MSE 0.000789506/1e-05, Gradient
0.0554529/1e-06
TRAINRP, Epoch 20/300, MSE 7.13065e-06/1e-05, Gradient
0.00346986/1e-06
TRAINRP, Performance goal met.
sim(net,p)

Q
1}

-1.0026 -0.9963 0.9978 1.0017

Rprop is generally much faster than the standard steepest descent algorithm.
It also has the nice property that it requires only a modest increase in memory
requirements. You do need to store the update values for each weight and bias,
which is equivalent to storage of the gradient.

Conjugate Gradient Algorithms

The basic backpropagation algorithm adjusts the weights in the steepest
descent direction (negative of the gradient), the direction in which the
performance function is decreasing most rapidly. It turns out that, although
the function decreases most rapidly along the negative of the gradient, this
does not necessarily produce the fastest convergence. In the conjugate gradient
algorithms a search is performed along conjugate directions, which produces
generally faster convergence than steepest descent directions. This section
presents four variations of conjugate gradient algorithms.
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See page 12-14 of [HDB96] for a discussion of conjugate gradient algorithms
and their application to neural networks.

In most of the training algorithms discussed up to this point, a learning rate is
used to determine the length of the weight update (step size). In most of the
conjugate gradient algorithms, the step size is adjusted at each iteration. A
search is made along the conjugate gradient direction to determine the step
size that minimizes the performance function along that line. There are five
different search functions included in the toolbox, and these are discussed in
“Line Search Routines” on page 5-24. Any of these search functions can be used
interchangeably with a variety of the training functions described in the
remainder of this chapter. Some search functions are best suited to certain
training functions, although the optimum choice can vary according to the
specific application. An appropriate default search function is assigned to each
training function, but you can modify this.

Fletcher-Reeves Update (traincgf)

All the conjugate gradient algorithms start out by searching in the steepest
descent direction (negative of the gradient) on the first iteration.

Po = -9y

A line search is then performed to determine the optimal distance to move
along the current search direction:

Xps1 = X+ 03P

Then the next search direction is determined so that it is conjugate to previous
search directions. The general procedure for determining the new search
direction is to combine the new steepest descent direction with the previous
search direction:

Pr = — 9 +BrPr_1

The various versions of the conjugate gradient algorithm are distinguished by
the manner in which the constant f; is computed. For the Fletcher-Reeves
update the procedure is

T
9.9

T
919 -1

Bk=
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This is the ratio of the norm squared of the current gradient to the norm
squared of the previous gradient.

See [F1Re64] or [HDB96] for a discussion of the Fletcher-Reeves conjugate
gradient algorithm.

The following code reinitializes the previous network and retrains it using the
Fletcher-Reeves version of the conjugate gradient algorithm. The training
parameters for traincgf are epochs, show, goal, time, min_grad, max_fail,
srchFcn, scal_tol, alpha, beta, delta, gama, low_lim, up_lim, maxstep,
minstep, and bmax. The first six parameters have been previously discussed.
The parameter srchFcn is the name of the line search function. It can be any
of the functions described in “Line Search Routines” on page 5-24 (or a
user-supplied function). The remaining parameters are associated with specific
line search routines and are described later in this section. The default line
search routine srchcha is used in this example. traincgf generally converges
in fewer iterations than trainrp (although there is more computation required
in each iteration).

p=1[-1-122;050 5];
t=1-1-1117;
net=newff (minmax(p),[3,1],{ 'tansig', 'purelin'}, 'traincgf');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINCGF-srchcha, Epoch 0/300, MSE 2.15911/1e-05, Gradient
3.17681/1e-06

TRAINCGF-srchcha, Epoch 5/300, MSE 0.111081/1e-05, Gradient
0.602109/1e-06

TRAINCGF-srchcha, Epoch 10/300, MSE 0.0095015/1e-05, Gradient
0.197436/1e-06

TRAINCGF-srchcha, Epoch 15/300, MSE 0.000508668/1e-05,
Gradient 0.0439273/1e-06

TRAINCGF-srchcha, Epoch 17/300, MSE 1.33611e-06/1e-05,
Gradient 0.00562836/1e-06
TRAINCGF, Performance goal met.
= sim(net,p)

a
a

-1.0001 -1.0023 0.9999 1.0002
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The conjugate gradient algorithms are usually much faster than variable
learning rate backpropagation, and are sometimes faster than trainrp,
although the results will vary from one problem to another. The conjugate
gradient algorithms require only a little more storage than the simpler
algorithms, so they are often a good choice for networks with a large number of
weights.

Try the Neural Network Design demonstration nnd12cg [HDB96] for an
illustration of the performance of a conjugate gradient algorithm.

Polak-Ribiére Update (traincgp)

Another version of the conjugate gradient algorithm was proposed by Polak
and Ribiére. As with the Fletcher-Reeves algorithm, the search direction at
each iteration is determined by

Pr =~ 9 +BrPr_1

For the Polak-Ribiére update, the constant 8 is computed by

T
Ag, 19

T
9% 19 -1

Bk:

This is the inner product of the previous change in the gradient with the
current gradient divided by the norm squared of the previous gradient. See
[F1Re64] or [HDB96] for a discussion of the Polak-Ribiére conjugate gradient

algorithm.

The following code recreates the previous network and trains it using the
Polak-Ribiére version of the conjugate gradient algorithm. The training
parameters for traincgp are the same as those for traincgf. The default line
search routine srchcha is used in this example. The parameters show and
epochs are set to the same values as they were for traincgf.

p [-1 -1 22;05 0 5];

t=1-1-111];

net=newff (minmax(p),[3,1],{ 'tansig', 'purelin'}, 'traincgp');
net.trainParam.show = 5;

net.trainParam.epochs = 300;

net.trainParam.goal = 1e-5;

[net,tr]=train(net,p,t);
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TRAINCGP-srchcha, Epoch 0/300, MSE 1.21966/1e-05, Gradient
1.77008/1e-06

TRAINCGP-srchcha, Epoch 5/300, MSE 0.227447/1e-05, Gradient
0.86507/1e-06

TRAINCGP-srchcha, Epoch 10/300, MSE 0.000237395/1e-05,
Gradient 0.0174276/1e-06

TRAINCGP-srchcha, Epoch 15/300, MSE 9.28243e-05/1e-05,
Gradient 0.00485746/1e-06

TRAINCGP-srchcha, Epoch 20/300, MSE 1.46146e-05/1e-05,
Gradient 0.000912838/1e-06

TRAINCGP-srchcha, Epoch 25/300, MSE 1.05893e-05/1e-05,
Gradient 0.00238173/1e-06

TRAINCGP-srchcha, Epoch 26/300, MSE 9.10561e-06/1e-05,
Gradient 0.00197441/1e-06
TRAINCGP, Performance goal met.

sim(net,p)

Q
1]

-0.9967 -1.0018 0.9958 1.0022

The traincgp routine has performance similar to traincgf. It is difficult to
predict which algorithm will perform best on a given problem. The storage
requirements for Polak-Ribiére (four vectors) are slightly larger than for
Fletcher-Reeves (three vectors).

Powell-Beale Restarts (traincgb)

For all conjugate gradient algorithms, the search direction is periodically reset
to the negative of the gradient. The standard reset point occurs when the
number of iterations is equal to the number of network parameters (weights
and biases), but there are other reset methods that can improve the efficiency
of training. One such reset method was proposed by Powell [Powe77], based on
an earlier version proposed by Beale [Beal72]. This technique restarts if there
is very little orthogonality left between the current gradient and the previous
gradient. This is tested with the following inequality:

T 2
0r_ 19 > 0.2]g]

If this condition is satisfied, the search direction is reset to the negative of the
gradient.
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The following code recreates the previous network and trains it using the
Powell-Beale version of the conjugate gradient algorithm. The training
parameters for traincgb are the same as those for traincgf. The default line
search routine srchcha is used in this example. The parameters show and
epochs are set to the same values as they were for traincgf.

p=1[-1-122;0505];
t=1-1-111];
net=newff (minmax(p),[3,1],{ 'tansig’', 'purelin'}, 'traincgb');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);
TRAINCGB-srchcha, Epoch 0/300, MSE 2.5245/1e-05, Gradient
3.66882/1e-06
TRAINCGB-srchcha, Epoch 5/300, MSE 4.86255e-07/1e-05, Gradient
0.00145878/1e-06
TRAINCGB, Performance goal met.
a = sim(net,p)

-0.9997 -0.9998 1.0000 1.0014

The traincgb routine has somewhat better performance than traincgp for
some problems, although performance on any given problem is difficult to
predict. The storage requirements for the Powell-Beale algorithm (six vectors)
are slightly larger than for Polak-Ribiére (four vectors).

Scaled Conjugate Gradient (trainscg)

Each of the conjugate gradient algorithms discussed so far requires a line
search at each iteration. This line search is computationally expensive, because
it requires that the network response to all training inputs be computed
several times for each search. The scaled conjugate gradient algorithm (SCG),
developed by Moller [Moll93], was designed to avoid the time-consuming line
search. This algorithm combines the model-trust region approach (used in the
Levenberg-Marquardt algorithm, described in “Levenberg-Marquardt
(trainlm)” on page 5-29), with the conjugate gradient approach. See {Mol193]
for a detailed explanation of the algorithm.

The following code reinitializes the previous network and retrains it using the
scaled conjugate gradient algorithm. The training parameters for trainscg are
epochs, show, goal, time, min_grad, max_fail, sigma, and lambda. The first six
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parameters have been discussed previously. The parameter sigma determines
the change in the weight for the second derivative approximation. The
parameter lambda regulates the indefiniteness of the Hessian. The parameters
show and epochs are set to 10 and 300, respectively.

p=1[-1-122;0505];
t=1-1-111];
net=newff (minmax(p),[3,1],{ 'tansig’', 'purelin'}, 'trainscg');
net.trainParam.show = 10;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);
TRAINSCG, Epoch 0/300, MSE 4.17697/1e-05, Gradient
5.32455/1e-06
TRAINSCG, Epoch 10/300, MSE 2.09505e-05/1e-05, Gradient
0.00673703/1e-06
TRAINSCG, Epoch 11/300, MSE 9.38923e-06/1e-05, Gradient
0.0049926/1e-06
TRAINSCG, Performance goal met.
sim(net,p)

Q
1}

-1.0057 -1.0008 1.0019 1.0005

The trainscg routine can require more iterations to converge than the other
conjugate gradient algorithms, but the number of computations in each
iteration is significantly reduced because no line search is performed. The
storage requirements for the scaled conjugate gradient algorithm are about the
same as those of Fletcher-Reeves.

Line Search Routines

Several of the conjugate gradient and quasi-Newton algorithms require that a
line search be performed. This section describes five different line searches you
can use. To use any of these search routines, you simply set the training
parameter srchFcn equal to the name of the desired search function, as
described in previous sections. It is often difficult to predict which of these
routines provides the best results for any given problem, but the default search
function is set to an appropriate initial choice for each training function, so you
never need to modify this parameter.
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Golden Section Search (srchgol)

The golden section search srchgol is a linear search that does not require the
calculation of the slope. This routine begins by locating an interval in which the
minimum of the performance function occurs. This is accomplished by
evaluating the performance at a sequence of points, starting at a distance of
delta and doubling in distance each step, along the search direction. When the
performance increases between two successive iterations, a minimum has been
bracketed. The next step is to reduce the size of the interval containing the
minimum. Two new points are located within the initial interval. The values of
the performance at these two points determine a section of the interval that can
be discarded, and a new interior point is placed within the new interval. This
procedure is continued until the interval of uncertainty is reduced to a width of
tol, which is equal to delta/scale tol.

See [HDB96], starting on page 12-16, for a complete description of the golden
section search. Try the Neural Network Design demonstration nnd12sd1
[HDBY6] for an illustration of the performance of the golden section search in
combination with a conjugate gradient algorithm.

Brent’s Search (srchbre)

Brent’s search is a linear search that is a hybrid of the golden section search
and a quadratic interpolation. Function comparison methods, like the golden
section search, have a first-order rate of convergence, while polynomial
interpolation methods have an asymptotic rate that is faster than superlinear.
On the other hand, the rate of convergence for the golden section search starts
when the algorithm is initialized, whereas the asymptotic behavior for the
polynomial interpolation methods can take many iterations to become
apparent. Brent’s search attempts to combine the best features of both
approaches.

For Brent’s search, you begin with the same interval of uncertainty used with
the golden section search, but some additional points are computed. A
quadratic function is then fitted to these points and the minimum of the
quadratic function is computed. If this minimum is within the appropriate
interval of uncertainty, it is used in the next stage of the search and a new
quadratic approximation is performed. If the minimum falls outside the known
interval of uncertainty, then a step of the golden section search is performed.

See [Bren73] for a complete description of this algorithm. This algorithm has
the advantage that it does not require computation of the derivative. The
derivative computation requires a backpropagation through the network,
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which involves more computation than a forward pass. However, the algorithm
can require more performance evaluations than algorithms that use derivative
information.

Hybrid Bisection-Cubic Search (srchhyb)

Like Brent’s search, srchhyb is a hybrid algorithm. It is a combination of
bisection and cubic interpolation. For the bisection algorithm, one point is
located in the interval of uncertainty, and the performance and its derivative
are computed. Based on this information, half of the interval of uncertainty is
discarded. In the hybrid algorithm, a cubic interpolation of the function is
obtained by using the value of the performance and its derivative at the two
endpoints. If the minimum of the cubic interpolation falls within the known
interval of uncertainty, then it is used to reduce the interval of uncertainty.
Otherwise, a step of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic search.
This algorithm does require derivative information, so it performs more
computations at each step of the algorithm than the golden section search or
Brent’s algorithm.

Charalambous’ Search (srchcha)

The method of Charalambous, srchcha, was designed to be used in
combination with a conjugate gradient algorithm for neural network training.
Like the previous two methods, it is a hybrid search. It uses a cubic
interpolation together with a type of sectioning.

See [Char92] for a description of Charalambous’ search. This routine is used as
the default search for most of the conjugate gradient algorithms because it
appears to produce excellent results for many different problems. It does
require the computation of the derivatives (backpropagation) in addition to the
computation of performance, but it overcomes this limitation by locating the
minimum with fewer steps. This is not true for all problems, and you might
want to experiment with other line searches.

Backtracking (srchbac)

The backtracking search routine srchbac is best suited to use with the
quasi-Newton optimization algorithms. It begins with a step multiplier of 1 and
then backtracks until an acceptable reduction in the performance is obtained.
On the first step it uses the value of performance at the current point and a step
multiplier of 1. It also uses the value of the derivative of performance at the
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current point to obtain a quadratic approximation to the performance function
along the search direction. The minimum of the quadratic approximation
becomes a tentative optimum point (under certain conditions) and the
performance at this point is tested. If the performance is not sufficiently
reduced, a cubic interpolation is obtained and the minimum of the cubic
interpolation becomes the new tentative optimum point. This process is
continued until a sufficient reduction in the performance is obtained.

The backtracking algorithm is described in [DeSc83]. It is used as the default
line search for the quasi-Newton algorithms, although it might not be the best
technique for all problems.

Quasi-Newton Algorithms

BFGS Algorithm (trainbfg)

Newton’s method is an alternative to the conjugate gradient methods for fast
optimization. The basic step of Newton’s method is

-1
Xpe1 = Xp—Ap &

where A;l is the Hessian matrix (second derivatives) of the performance index
at the current values of the weights and biases. Newton’s method often
converges faster than conjugate gradient methods. Unfortunately, it is complex
and expensive to compute the Hessian matrix for feedforward neural networks.
There is a class of algorithms that is based on Newton’s method, but which
doesn’t require calculation of second derivatives. These are called
quasi-Newton (or secant) methods. They update an approximate Hessian
matrix at each iteration of the algorithm. The update is computed as a function
of the gradient. The quasi-Newton method that has been most successful in
published studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
update. This algorithm is implemented in the trainbfg routine.

The following code reinitializes the previous network and retrains it using the
BFGS quasi-Newton algorithm. The training parameters for trainbfg are the
same as those for traincgf. The default line search routine srchbac is used in
this example. The parameters show and epochs are set to 5 and 300,
respectively.

-1 2 2;0 50 5];
11 1];

p:

[-1
t=[-1
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net=newff (minmax(p),[3,1],{ 'tansig’', 'purelin'}, 'trainbfg');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINBFG-srchbac, Epoch 0/300, MSE 0.492231/1e-05, Gradient
2.16307/1e-06

TRAINBFG-srchbac, Epoch 5/300, MSE 0.000744953/1e-05, Gradient
0.0196826/1e-06

TRAINBFG-srchbac, Epoch 8/300, MSE 7.69867e-06/1e-05, Gradient
0.00497404/1e-06
TRAINBFG, Performance goal met.
sim(net,p)

Q
1]

-0.9995 -1.0004 1.0008 0.9945

The BFGS algorithm is described in [DeSc83]. This algorithm requires more
computation in each iteration and more storage than the conjugate gradient
methods, although it generally converges in fewer iterations. The approximate
Hessian must be stored, and its dimension is n x n, where n is equal to the
number of weights and biases in the network. For very large networks it might
be better to use Rprop or one of the conjugate gradient algorithms. For smaller
networks, however, trainbfg can be an efficient training function.

One Step Secant Algorithm (trainoss)

Because the BFGS algorithm requires more storage and computation in each
iteration than the conjugate gradient algorithms, there is need for a secant
approximation with smaller storage and computation requirements. The one
step secant (OSS) method is an attempt to bridge the gap between the
conjugate gradient algorithms and the quasi-Newton (secant) algorithms. This
algorithm does not store the complete Hessian matrix; it assumes that at each
iteration, the previous Hessian was the identity matrix. This has the additional
advantage that the new search direction can be calculated without computing
a matrix inverse.

The following code reinitializes the previous network and retrains it using the
one-step secant algorithm. The training parameters for trainoss are the same
as those for traincgf. The default line search routine srchbac is used in this
example. The parameters show and epochs are set to 5 and 300, respectively.
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p=1[-1-122;0505];
t=1-1-111];
net=newff (minmax(p),[3,1],{ 'tansig’', 'purelin'}, 'trainoss');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINOSS-srchbac, Epoch 0/300, MSE 0.665136/1e-05, Gradient
1.61966/1e-06

TRAINOSS-srchbac, Epoch 5/300, MSE 0.000321921/1e-05, Gradient
0.0261425/1e-06

TRAINOSS-srchbac, Epoch 7/300, MSE 7.85697e-06/1e-05, Gradient
0.00527342/1e-06

TRAINOSS, Performance goal met.
a = sim(net,p)

-1.0035 -0.9958 1.0014 0.9997

The one step secant method is described in [Batt92]. This algorithm requires
less storage and computation per epoch than the BFGS algorithm. It requires
slightly more storage and computation per epoch than the conjugate gradient
algorithms. It can be considered a compromise between full quasi-Newton
algorithms and conjugate gradient algorithms.

Levenberg-Marquardt (trainim)

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was
designed to approach second-order training speed without having to compute
the Hessian matrix. When the performance function has the form of a sum of
squares (as is typical in training feedforward networks), then the Hessian
matrix can be approximated as

H=JJ
and the gradient can be computed as
g = JTe

where J is the Jacobian matrix that contains first derivatives of the network
errors with respect to the weights and biases, and e is a vector of network
errors. The Jacobian matrix can be computed through a standard
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backpropagation technique (see [HaMe94]) that is much less complex than
computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian
matrix in the following Newton-like update:

-1
Xpi1 = xk—[JTJ+uI] JTe

When the scalar | is zero, this is just Newton’s method, using the approximate
Hessian matrix. When L is large, this becomes gradient descent with a small
step size. Newton’s method is faster and more accurate near an error
minimum, so the aim is to shift toward Newton’s method as quickly as possible.
Thus, | is decreased after each successful step (reduction in performance
function) and is increased only when a tentative step would increase the
performance function. In this way, the performance function is always reduced
at each iteration of the algorithm.

The following code reinitializes the previous network and retrains it using the
Levenberg-Marquardt algorithm. The training parameters for trainlm are
epochs, show, goal, time,min_grad, max_fail, mu,mu_dec, mu_inc, mu_max, and
mem_reduc. The first six parameters were discussed earlier. The parameter mu
is the initial value for u. This value is multiplied by mu_dec whenever the
performance function is reduced by a step. It is multiplied by mu_inc whenever
a step would increase the performance function. If mu becomes larger than
mu_max, the algorithm is stopped. The parameter mem_reduc is used to control
the amount of memory used by the algorithm. It is discussed in the next
section. The parameters show and epochs are set to 5 and 300, respectively.

p=1[-1-122;0505];
t=1-1-111];
net=newff (minmax(p),[3,1],{ 'tansig', 'purelin'}, 'trainlm');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);
TRAINLM, Epoch 0/300, MSE 2.7808/1e-05, Gradient 7.77931/1e-10
TRAINLM, Epoch 4/300, MSE 3.67935e-08/1e-05, Gradient
0.000808272/1e-10
TRAINLM, Performance goal met.
a = sim(net,p)



Faster Training

a -
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The original description of the Levenberg-Marquardt algorithm is given in
[Marq63]. The application of Levenberg-Marquardt to neural network training
is described in [HaMe94] and starting on page 12-19 of [HDB96]. This
algorithm appears to be the fastest method for training moderate-sized
feedforward neural networks (up to several hundred weights). It also has a
very efficient MATLAB implementation, because the solution of the matrix
equation is a built-in function, so its attributes become even more pronounced
in a MATLAB setting.

Try the Neural Network Design demonstration nnd12m [HDB96] for an
illustration of the performance of the batch Levenberg-Marquardt algorithm.

Reduced Memory Levenberg-Marquardt (trainim)

The main drawback of the Levenberg-Marquardt algorithm is that it requires
the storage of some matrices that can be quite large for certain problems. The
size of the Jacobian matrix is @ x n, where @ is the number of training sets and
n is the number of weights and biases in the network. It turns out that this
matrix does not have to be computed and stored as a whole. For example, if you
were to divide the Jacobian into two equal submatrices you could compute the
approximate Hessian matrix as follows:

J
H-J"J- [J’llf Jﬂ [,;1] S £ I 5
2

Therefore, the full Jacobian does not have to exist at one time. You can compute
the approximate Hessian by summing a series of subterms. Once one subterm
has been computed, the corresponding submatrix of the Jacobian can be
cleared.

When you use the training function trainlm, the parameter mem_reduc
determines how many rows of the Jacobian are to be computed in each
submatrix. If mem_reduc is set to 1, then the full Jacobian is computed, and no
memory reduction is achieved. If mem_reduc is set to 2, then only half of the
Jacobian is computed at one time. This saves half the memory used by the
calculation of the full Jacobian.
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There is a drawback to using memory reduction. A significant computational
overhead is associated with computing the Jacobian in submatrices. If you
have enough memory available, then it is better to set mem_reduc to 1 and to
compute the full Jacobian. If you have a large training set, and you are running
out of memory, then you should set mem_reduc to 2 and try again. If you still
run out of memory, continue to increase mem_reduc.

Even if you use memory reduction, the Levenberg-Marquardt algorithm will
always compute the approximate Hessian matrix, which has dimensions n x n.
If your network is very large, then you might run out of memory. If this is the
case, try trainscg, trainrp, or one of the conjugate gradient algorithms.
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Speed and Memory Comparison

It is very difficult to know which training algorithm will be the fastest for a
given problem. It depends on many factors, including the complexity of the
problem, the number of data points in the training set, the number of weights
and biases in the network, the error goal, and whether the network is being
used for pattern recognition (discriminant analysis) or function approximation
(regression). This section compares the various training algorithms.
Feedforward networks are trained on six different problems. Three of the
problems fall in the pattern recognition category and the three others fall in the
function approximation category. Two of the problems are simple “toy”
problems, while the other four are “real world” problems. Networks with a
variety of different architectures and complexities are used, and the networks
are trained to a variety of different accuracy levels.

The following table lists the algorithms that are tested and the acronyms used
to identify them.

Acronym  Algorithm

LM trainlm Levenberg-Marquardt

BFG trainbfg BFGS Quasi-Newton

RP trainrp Resilient Backpropagation

SCG trainscg Scaled Conjugate Gradient

CGB traincgb Conjugate Gradient with Powell/Beale Restarts
CGF traincgf Fletcher-Powell Conjugate Gradient

CGP traincgp Polak-Ribiére Conjugate Gradient

0SS trainoss One Step Secant

GDX traingdx Variable Learning Rate Backpropagation
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The following table lists the six benchmark problems and some characteristics
of the networks, training processes, and computers used.

Problem Title Problem Type Network Error Computer

Structure Goal
SIN Function approximation 1-5-1 0.002 Sun Sparc 2
PARITY Pattern recognition 3-10-10-1 0.001  Sun Sparc 2
ENGINE Function approximation 2-30-2 0.005 Sun Enterprise 4000
CANCER Pattern recognition 9-5-5-2  0.012 Sun Sparc 2
CHOLESTEROL Function approximation 21-15-3 0.027  Sun Sparc 20
DIABETES Pattern recognition 8-15-15-2 0.05 Sun Sparc 20
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SIN Data Set

The first benchmark data set is a simple function approximation problem. A
1-5-1 network, with tansig transfer functions in the hidden layer and a linear
transfer function in the output layer, is used to approximate a single period of
a sine wave. The following table summarizes the results of training the
network using nine different training algorithms. Each entry in the table
represents 30 different trials, where different random initial weights are used
in each trial. In each case, the network is trained until the squared error is less
than 0.002. The fastest algorithm for this problem is the Levenberg-Marquardt
algorithm. On the average, it is over four times faster than the next fastest
algorithm. This is the type of problem for which the LM algorithm is best suited
— a function approximation problem where the network has fewer than one
hundred weights and the approximation must be very accurate.

Algorithm Mean Ratio Min. Max. Std.
Time (s) Time (s) Time (s) (s)

LM 1.14 1.00 0.65 1.83 0.38

BFG 5.22 4.58 3.17 14.38 2.08

RP 5.67 4.97 2.66 17.24 3.72




Speed and Memory Comparison

Algorithm Mean Ratio Min. Max. Std.
Time (s) Time (s) Time (s) (s)

SCG 6.09 5.34 3.18 23.64 3.81
CGB 6.61 5.80 2.99 23.65 3.67
CGF 7.86 6.89 3.57 31.23 4.76
CGP 8.24 7.23 4.07 32.32 5.03
0SS 9.64 8.46 3.97 59.63 9.79
GDX 27.69 24.29 17.21 258.15 43.65

The performance of the various algorithms can be affected by the accuracy
required of the approximation. This is demonstrated in the following figure,
which plots the mean square error versus execution time (averaged over the 30
trials) for several representative algorithms. Here you can see that the error in
the LM algorithm decreases much more rapidly with time than the other
algorithms shown.

Comparsion of Convergency Speed on SIN
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The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
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convergence goal. Here you can see that as the error goal is reduced, the
improvement provided by the LM algorithm becomes more pronounced. Some
algorithms perform better as the error goal is reduced (LM and BFG), and
other algorithms degrade as the error goal is reduced (OSS and GDX).
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PARITY Data Set

The second benchmark problem is a simple pattern recognition problem —
detect the parity of a 3-bit number. If the number of ones in the input pattern
is odd, then the network should output a 1; otherwise, it should output a -1. The
network used for this problem is a 3-10-10-1 network with tansig neurons in
each layer. The following table summarizes the results of training this network
with the nine different algorithms. Each entry in the table represents 30
different trials, where different random initial weights are used in each trial.
In each case, the network is trained until the squared error is less than 0.001.
The fastest algorithm for this problem is the resilient backpropagation
algorithm, although the conjugate gradient algorithms (in particular, the
scaled conjugate gradient algorithm) are almost as fast. Notice that the LM
algorithm does not perform well on this problem. In general, the LM algorithm
does not perform as well on pattern recognition problems as it does on function
approximation problems. The LM algorithm is designed for least squares
problems that are approximately linear. Because the output neurons in pattern



Speed and Memory Comparison

recognition problems are generally saturated, you will not be operating in the
linear region.

Algorithm  Mean Ratio Min.Time Max.Time Std.
Time (s) (s) (s) (s)
RP 3.73 1.00 2.35 6.89 1.26
SCG 4.09 1.10 2.36 7.48 1.56
CGP 5.13 1.38 3.50 8.73 1.05
CGB 5.30 1.42 3.91 11.59 1.35
CGF 6.62 1.77 3.96 28.05 4.32
0SS 8.00 2.14 5.06 14.41 1.92
LM 13.07 3.50 6.48 23.78 4.96
BFG 19.68 5.28 14.19 26.64 2.85
GDX 27.07 7.26 25.21 28.52 0.86

As with function approximation problems, the performance of the various
algorithms can be affected by the accuracy required of the network. This is
demonstrated in the following figure, which plots the mean square error versus
execution time for some typical algorithms. The LM algorithm converges
rapidly after some point, but only after the other algorithms have already
converged.
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The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error

convergence goal. Again you can see that some algorithms degrade as the error
goal is reduced (OSS and BFG).
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ENGINE Data Set

The third benchmark problem is a realistic function approximation (or
nonlinear regression) problem. The data is obtained from the operation of an
engine. The inputs to the network are engine speed and fueling levels and the
network outputs are torque and emission levels. The network used for this
problem is a 2-30-2 network with tansig neurons in the hidden layer and linear
neurons in the output layer. The following table summarizes the results of
training this network with the nine different algorithms. Each entry in the
table represents 30 different trials (10 trials for RP and GDX because of time
constraints), where different random initial weights are used in each trial. In
each case, the network is trained until the squared error is less than 0.005. The
fastest algorithm for this problem is the LM algorithm, although the BFGS
quasi-Newton algorithm and the conjugate gradient algorithms (the scaled
conjugate gradient algorithm in particular) are almost as fast. Although this is
a function approximation problem, the LM algorithm is not as clearly superior
as it was on the SIN data set. In this case, the number of weights and biases in
the network is much larger than the one used on the SIN problem (152 versus
16), and the advantages of the LM algorithm decrease as the number of
network parameters increases.

Algorithm  Mean Ratio Min.Time Max. Std.
Time (s) (s) Time (s) (s)

LM 18.45 1.00 12.01 30.03 4.27
BFG 27.12 1.47 16.42 47.36 5.95
SCG 36.02 1.95 19.39 52.45 7.78
CGF 37.93 2.06 18.89 50.34 6.12
CGB 39.93 2.16 23.33 55.42 7.50
CGP 44.30 2.40 24.99 71.55 9.89
0SS 48.71 2.64 23.51 80.90 12.33
RP 65.91 3.57 31.83 134.31 34.24
GDX 188.50 10.22 81.59 279.90 66.67
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The following figure plots the mean square error versus execution time for
some typical algorithms. The performance of the LM algorithm improves over
time relative to the other algorithms.
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The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
convergence goal. Again you can see that some algorithms degrade as the error
goal is reduced (GDX and RP), while the LM algorithm improves.
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CANCER Data Set

The fourth benchmark problem is a realistic pattern recognition (or nonlinear
discriminant analysis) problem. The objective of the network is to classify a
tumor as either benign or malignant based on cell descriptions gathered by
microscopic examination. Input attributes include clump thickness, uniformity
of cell size and cell shape, the amount of marginal adhesion, and the frequency
of bare nuclei. The data was obtained from the University of Wisconsin
Hospitals, Madison, from Dr. William H. Wolberg. The network used for this
problem is a 9-5-5-2 network with tansig neurons in all layers. The following
table summarizes the results of training this network with the nine different
algorithms. Each entry in the table represents 30 different trials, where
different random initial weights are used in each trial. In each case, the
network is trained until the squared error is less than 0.012. A few runs failed
to converge for some of the algorithms, so only the top 75% of the runs from
each algorithm were used to obtain the statistics.

The conjugate gradient algorithms and resilient backpropagation all provide
fast convergence, and the LM algorithm is also reasonably fast. As with the

5-41



S5 Backpropagation

5-42

parity data set, the LM algorithm does not perform as well on pattern
recognition problems as it does on function approximation problems.

Algorithm  Mean Ratio Min.Time Max. Std.
Time (s) (s) Time (s) (s)

CGB 80.27 1.00 55.07 102.31 13.17
RP 83.41 1.04 59.51 109.39 13.44
SCG 86.58 1.08 41.21 112.19 18.25
CGP 87.70 1.09 56.35 116.37 18.03
CGF 110.05 1.37 63.33 171.53 30.13
LM 110.33 1.37 58.94 201.07 38.20
BFG 209.60 2.61 118.92 318.18 58.44
GDX 313.22 3.90 166.48 446.43 75.44
0SS 463.87 5.78 250.62 599.99 97.35

The following figure plots the mean square error versus execution time for
some typical algorithms. For this problem there is not as much variation in

performance as in previous problems.
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The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
convergence goal. Again you can see that some algorithms degrade as the error
goal is reduced (OSS and BFG) while the LM algorithm improves. It is typical
of the LM algorithm on any problem that its performance improves relative to

other algorithms as the error goal is reduced.
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CHOLESTEROL Data Set

The fifth benchmark problem is a realistic function approximation (or
nonlinear regression) problem. The objective of the network is to predict
cholesterol levels (1dl, hdl, and vld]l) based on measurements of 21 spectral
components. The data was obtained from Dr. Neil Purdie, Department of
Chemistry, Oklahoma State University [PuLu92]. The network used for this
problem is a 21-15-3 network with tansig neurons in the hidden layers and
linear neurons in the output layer. The following table summarizes the results
of training this network with the nine different algorithms. Each entry in the
table represents 20 different trials (10 trials for RP and GDX), where different
random initial weights are used in each trial. In each case, the network is
trained until the squared error is less than 0.027.

The scaled conjugate gradient algorithm has the best performance on this
problem, although all the conjugate gradient algorithms perform well. The LM
algorithm does not perform as well on this function approximation problem as
it did on the other two. That is because the number of weights and biases in the
network has increased again (378 versus 152 versus 16). As the number of
parameters increases, the computation required in the LM algorithm increases
geometrically.



Speed and Memory Comparison

Algorithm Mean Ratio Min.Time Max. Std.
Time (s) (s) Time (s) (s)

SCG 99.73 1.00 83.10 113.40 9.93
CGP 121.54 1.22 101.76 162.49 16.34
CGB 124.06 1.24 107.64 146.90 14.62
CGF 136.04 1.36 106.46 167.28 17.67
LM 261.50 2.62 103.52 398.45 102.06
0SS 268.55 2.69 197.84 372.99 56.79
BFG 550.92 5.52 471.61 676.39 46.59
RP 1519.00 15.23 581.17 2256.10 557.34
GDX 3169.50 31.78 2514.90 4168.20 610.52

The following figure plots the mean square error versus execution time for

some typical algorithms. For this problem, you can see that the LM algorithm

is able to drive the mean square error to a lower level than the other

algorithms. The SCG and RP algorithms provide the fastest initial

convergence.
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The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
convergence goal. You can see that the LM and BFG algorithms improve
relative to the other algorithms as the error goal is reduced.
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DIABETES Data Set

The sixth benchmark problem is a pattern recognition problem. The objective
of the network is to decide whether an individual has diabetes, based on
personal data (age, number of times pregnant) and the results of medical
examinations (e.g., blood pressure, body mass index, result of glucose tolerance
test, etc.). The data was obtained from the University of California, Irvine,
machine learning data base. The network used for this problem is an 8-15-15-2
network with tansig neurons in all layers. The following table summarizes the
results of training this network with the nine different algorithms. Each entry
in the table represents 10 different trials, where different random initial
weights are used in each trial. In each case, the network is trained until the
squared error is less than 0.05.

The conjugate gradient algorithms and resilient backpropagation all provide
fast convergence. The results on this problem are consistent with the other
pattern recognition problems considered. The RP algorithm works well on all
the pattern recognition problems. This is reasonable, because that algorithm
was designed to overcome the difficulties caused by training with sigmoid
functions, which have very small slopes when operating far from the center
point. For pattern recognition problems, you use sigmoid transfer functions in
the output layer, and you want the network to operate at the tails of the
sigmoid function.

Algorithm  Mean Ratio Min.Time Max. Std.
Time (s) (s) Time (s) (s)

RP 323.90 1.00 187.43 576.90 111.37
SCG 390.53 1.21 267.99 487.17 75.07
CGB 394.67 1.22 312.25 558.21 85.38
CGP 415.90 1.28 320.62 614.62 94.77
0SS 784.00 2.42 706.89 936.52 76.37
CGF 784.50 2.42 629.42 1082.20 144.63
LM 1028.10 3.17 802.01 1269.50 166.31
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Algorithm  Mean Ratio Min.Time Max. Std.

Time (s) (s) Time (s) (s)
BFG 1821.00 5.62 1415.80 3254.50 546.36
GDX 7687.00 23.73 5169.20 10350.00 2015.00

The following figure plots the mean square error versus execution time for
some typical algorithms. As with other problems, you see that the SCG and RP
have fast initial convergence, while the LM algorithm is able to provide smaller
final error.
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The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
convergence goal. In this case, you can see that the BFG algorithm degrades as
the error goal is reduced, while the LM algorithm improves. The RP algorithm
is best, except at the smallest error goal, where SCG is better.
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Summary

There are several algorithm characteristics that can be deduced from the
experiments described. In general, on function approximation problems, for
networks that contain up to a few hundred weights, the Levenberg-Marquardt
algorithm will have the fastest convergence. This advantage is especially
noticeable if very accurate training is required. In many cases, trainlmis able
to obtain lower mean square errors than any of the other algorithms tested.
However, as the number of weights in the network increases, the advantage of
trainlm decreases. In addition, trainlm performance is relatively poor on
pattern recognition problems. The storage requirements of trainlm are larger
than the other algorithms tested. By adjusting the mem_reduc parameter,
discussed earlier, the storage requirements can be reduced, but at the cost of
increased execution time.

The trainrp function is the fastest algorithm on pattern recognition problems.
However, it does not perform well on function approximation problems. Its
performance also degrades as the error goal is reduced. The memory
requirements for this algorithm are relatively small in comparison to the other
algorithms considered.
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The conjugate gradient algorithms, in particular trainscg, seem to perform
well over a wide variety of problems, particularly for networks with a large
number of weights. The SCG algorithm is almost as fast as the LM algorithm
on function approximation problems (faster for large networks) and is almost
as fast as trainrp on pattern recognition problems. Its performance does not
degrade as quickly as trainrp performance does when the error is reduced.
The conjugate gradient algorithms have relatively modest memory
requirements.

The performance of trainbfg is similar to that of trainlm. It does not require
as much storage as trainlm, but the computation required does increase
geometrically with the size of the network, because the equivalent of a matrix
inverse must be computed at each iteration.

The variable learning rate algorithm traingdx is usually much slower than the
other methods, and has about the same storage requirements as trainrp, but
it can still be useful for some problems. There are certain situations in which
it is better to converge more slowly. For example, when using early stopping (as
described in the next section) you can have inconsistent results if you use an
algorithm that converges too quickly. You might overshoot the point at which
the error on the validation set is minimized.
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Improving Generalization

One of the problems that occur during neural network training is called
overfitting. The error on the training set is driven to a very small value, but
when new data is presented to the network the error is large. The network has
memorized the training examples, but it has not learned to generalize to new
situations.

The following figure shows the response of a 1-20-1 neural network that has
been trained to approximate a noisy sine function. The underlying sine
function is shown by the dotted line, the noisy measurements are given by the
‘+’ symbols, and the neural network response is given by the solid line. Clearly
this network has overfitted the data and will not generalize well.

Function Approximation
15 T T T

Output

15 I I I I I I I I I
21 K
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One method for improving network generalization is to use a network that is
just large enough to provide an adequate fit. The larger network you use, the
more complex the functions the network can create. If you use a small enough
network, it will not have enough power to overfit the data. Run the Neural
Network Design demonstration nnd11gn [HDB96] to investigate how reducing
the size of a network can prevent overfitting.

Unfortunately, it is difficult to know beforehand how large a network should be
for a specific application. There are two other methods for improving
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generalization that are implemented in Neural Network Toolbox:
regularization and early stopping. The next sections describe these two
techniques and the routines to implement them.

Note that if the number of parameters in the network is much smaller than the
total number of points in the training set, then there is little or no chance of
overfitting. If you can easily collect more data and increase the size of the
training set, then there is no need to worry about the following techniques to
prevent overfitting. The rest of this section only applies to those situations in
which you want to make the most of a limited supply of data.

Regularization

The first method for improving generalization is called regularization. This
involves modifying the performance function, which is normally chosen to be
the sum of squares of the network errors on the training set. The next section
explains how the performance function can be modified, and the following
section describes a routine that automatically sets the optimal performance
function to achieve the best generalization.

Modified Performance Function

The typical performance function used for training feedforward neural
networks is the mean sum of squares of the network errors.

N N

1 2 _ 1 2

F = mse = Nz(ei) = ]T/'Z(ti_ai)
i=1 i=1

It is possible to improve generalization if you modify the performance function
by adding a term that consists of the mean of the sum of squares of the network
weights and biases

msereg = ymse + (1 —-y)ymsw

where 7is the performance ratio, and

n
1 2
msw = nZwJ-

i=1
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Using this performance function causes the network to have smaller weights
and biases, and this forces the network response to be smoother and less likely
to overfit.

The following code reinitializes the previous network and retrains it using the
BFGS algorithm with the regularized performance function. Here the
performance ratio is set to 0.5, which gives equal weight to the mean square
errors and the mean square weights.

p=1[-1-122;0505];

t=1-1-111];

net=newff (minmax(p),[3,1],{ 'tansig’', 'purelin'}, 'trainbfg');
net.performFcn = 'msereg’;

net.performParam.ratio = 0.5;

net.trainParam.show = 5;

net.trainParam.epochs = 300;

net.trainParam.goal = 1e-5;

[net,tr]=train(net,p,t);

The problem with regularization is that it is difficult to determine the optimum
value for the performance ratio parameter. If you make this parameter too
large, you might get overfitting. If the ratio is too small, the network does not
adequately fit the training data. The next section describes a routine that
automatically sets the regularization parameters.

Automated Regularization (trainbr)

It is desirable to determine the optimal regularization parameters in an
automated fashion. One approach to this process is the Bayesian framework of
David MacKay [MacK92]. In this framework, the weights and biases of the
network are assumed to be random variables with specified distributions. The
regularization parameters are related to the unknown variances associated
with these distributions. You can then estimate these parameters using
statistical techniques.

A detailed discussion of Bayesian regularization is beyond the scope of this
user guide. A detailed discussion of the use of Bayesian regularization, in
combination with Levenberg-Marquardt training, can be found in [FoHa97].

Bayesian regularization has been implemented in the function trainbr. The
following code shows how you can train a 1-20-1 network using this function to
approximate the noisy sine wave shown on page 5-51.
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p [-1:.05:1];

t sin(2*pi*p)+0.1*randn(size(p));

net=newff (minmax(p),[20,1],{ 'tansig’', 'purelin'}, 'trainbr');
net.trainParam.show = 10;

net.trainParam.epochs = 50;

randn('seed',192736547);

net = init(net);

[net,tr]=train(net,p,t);

TRAINBR, Epoch 0/200, SSE 273.764/0, SSW 21460.5, Grad
2.96e+02/1.00e-10, #Par 6.10e+01/61

TRAINBR, Epoch 40/200, SSE 0.255652/0, SSW 1164.32, Grad
1.74e-02/1.00e-10, #Par 2.21e+01/61

TRAINBR, Epoch 80/200, SSE 0.317534/0, SSW 464.566, Grad
5.65e-02/1.00e-10, #Par 1.78e+01/61

TRAINBR, Epoch 120/200, SSE 0.379938/0, SSW 123.028, Grad
3.64e-01/1.00e-10, #Par 1.17e+01/61

TRAINBR, Epoch 160/200, SSE 0.380578/0, SSW 108.294, Grad
6.43e-02/1.00e-10, #Par 1.19e+01/61

One feature of this algorithm is that it provides a measure of how many
network parameters (weights and biases) are being effectively used by the
network. In this case, the final trained network uses approximately 12
parameters (indicated by #Par in the printout) out of the 61 total weights and
biases in the 1-20-1 network. This effective number of parameters should
remain approximately the same, no matter how large the number of
parameters in the network becomes. (This assumes that the network has been
trained for a sufficient number of iterations to ensure convergence.)

The trainbr algorithm generally works best when the network inputs and
targets are scaled so that they fall approximately in the range [-1,1]. That is
the case for the test problem here. If your inputs and targets do not fall in this
range, you can use the function mapminmax or mapstd to perform the scaling, as
described in “Preprocessing and Postprocessing” on page 5-61.

The following figure shows the response of the trained network. In contrast to
the previous figure, in which a 1-20-1 network overfits the data, here you see
that the network response is very close to the underlying sine function (dotted
line), and, therefore, the network will generalize well to new inputs. You could
have tried an even larger network, but the network response would never
overfit the data. This eliminates the guesswork required in determining the
optimum network size.
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When using trainbr, it is important to let the algorithm run until the effective
number of parameters has converged. The training might stop with the
message “Maximum MU reached.” This is typical, and is a good indication that
the algorithm has truly converged. You can also tell that the algorithm has
converged if the sum squared error (SSE) and sum squared weights (SSW) are
relatively constant over several iterations. When this occurs you might want to
click the Stop Training button in the training window.

Function Approximation
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Early Stopping

Another method for improving generalization is called early stopping. In this
technique the available data is divided into three subsets. The first subset is
the training set, which is used for computing the gradient and updating the
network weights and biases. The second subset is the validation set. The error
on the validation set is monitored during the training process. The validation
error normally decreases during the initial phase of training, as does the
training set error. However, when the network begins to overfit the data, the
error on the validation set typically begins to rise. When the validation error
increases for a specified number of iterations (net.trainParam.max_fail), the
training is stopped, and the weights and biases at the minimum of the
validation error are returned.
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The test set error is not used during the training, but it is used to compare
different models. It is also useful to plot the test set error during the training
process. If the error in the test set reaches a minimum at a significantly
different iteration number than the validation set error, this might indicate a
poor division of the data set.

Early stopping can be used with any of the training functions described earlier
in this chapter. You simply need to pass the validation data to the training
function. The following sequence of commands demonstrates how to use the
early stopping function.

Create a simple test problem. For the training set, generate a noisy sine wave
with input points ranging from -1 to 1 at steps of 0.05.

p=1[-1:0.05:1];

t sin(2*pi*p)+0.1*randn(size(p));

Generate the validation set. The inputs range from -1 to 1, as in the test set,
but offset slightly. To make the problem more realistic, also add a different
noise sequence to the underlying sine wave. Notice that the validation set is
contained in a structure that contains both the inputs and the targets.

val.P
val.T

[-0.975:.05:0.975];
sin(2*pi*v.P)+0.1*randn(size(v.P));

Now create a 1-20-1 network, as in the previous example with regularization,
and train it. (Notice that the validation structure is passed to train after the
initial input and layer conditions, which are null vectors in this case because

the network contains no delays. This example does not use a test set. (The test
set structure would be the next argument in the call to train.) This example

uses the training function traingdx, although early stopping can be used with
any of the other training functions discussed in this chapter.

net=newff([-1 1],[20,1],{ 'tansig"', 'purelin'}, "traingdx"');
net.trainParam.show = 25;

net.trainParam.epochs = 300;

net = init(net);

[net,tr]=train(net,p,t,[],[],val);

TRAINGDX, Epoch 0/300, MSE 9.39342/0, Gradient 17.7789/1e-06
TRAINGDX, Epoch 25/300, MSE 0.312465/0, Gradient 0.873551/1e-06
TRAINGDX, Epoch 50/300, MSE 0.102526/0, Gradient 0.206456/1e-06
TRAINGDX, Epoch 75/300, MSE 0.0459503/0, Gradient 0.0954717/1e-06
TRAINGDX, Epoch 100/300, MSE 0.015725/0, Gradient 0.0299898/1e-06
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TRAINGDX, Epoch 125/300, MSE 0.00628898/0, Gradient
0.042467/1e-06

TRAINGDX, Epoch 131/300, MSE 0.00650734/0, Gradient
0.133314/1e-06

TRAINGDX, Validation stop.

The following figure shows a graph of the network response. You can see that
the network did not overfit the data, as in the earlier example, although the
response is not extremely smooth, as when using regularization. This is
characteristic of early stopping.

Function Approximation
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Summary and Discussion of Regularization
and Early Stopping

Both regularization and early stopping can ensure network generalization
when properly applied.

When you use Bayesian regularization, it is important to train the network
until it reaches convergence. The sum squared error, the sum squared weights,
and the effective number of parameters should reach constant values when the
network has converged.
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For early stopping, you must be careful not to use an algorithm that converges
too rapidly. If you are using a fast algorithm (like trainlm), set the training
parameters so that the convergence is relatively slow (e.g., set mu to a relatively
large value, such as 1, and set mu_dec and mu_inc to values close to 1, such as
0.8 and 1.5, respectively). The training functions trainscg and trainrp
usually work well with early stopping.

With early stopping, the choice of the validation set is also important. The
validation set should be representative of all points in the training set.

With both regularization and early stopping, it is a good idea to train the
network starting from several different initial conditions. It is possible for
either method to fail in certain circumstances. By testing several different
initial conditions, you can verify robust network performance.

Based on our experience, Bayesian regularization generally provides better
generalization performance than early stopping when you are training
function approximation networks. This is because Bayesian regularization
does not require that a validation data set be separated out of the training data
set; it uses all the data. This advantage is especially noticeable when the size
of the data set is small.

To provide some insight into the performance of the algorithms, both early
stopping and Bayesian regularization were tested on several benchmark data
sets, which are listed in the following table.

Data Set Title

Number Network Description

of Points

BALL 67 2-10-1 Dual-sensor calibration for a ball position
measurement

SINE (5% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at 5%
level

SINE (2% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at 2%
level

ENGINE (ALL) 1199 2-30-2 Engine sensor — full data set

ENGINE (1/4) 300 2-30-2 Engine sensor — 1/4 of data set
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Data Set Title

Number Network Description

of Points
CHOLEST 264 5-15-3 Cholesterol measurement — full data set
(ALL)
CHOLEST (1/2) 132 5-15-3  Cholesterol measurement — 1/2 data set

These data sets are of various sizes, with different numbers of inputs and
targets. With two of the data sets the networks were trained once using all the
data and then retrained using only a fraction of the data. This illustrates how
the advantage of Bayesian regularization becomes more noticeable when the
data sets are smaller. All the data sets are obtained from physical systems
except for the SINE data sets. These two were artificially created by adding
various levels of noise to a single cycle of a sine wave. The performance of the
algorithms on these two data sets illustrates the effect of noise.

The following table summarizes the performance of early stopping (ES) and
Bayesian regularization (BR) on the seven test sets. (The trainscg algorithm
was used for the early stopping tests. Other algorithms provide similar
performance.)

Mean Squared Test Set Error

Method Ball Engine Engine Choles Choles Sine Sine
(All) (1/4) (All) (1/2) (5% N) (2% N)
ES 1.2e-1 1.3e-2 1.9e-2 1.2e-1 1.4e-1 1.7e-1 1.3e-1
BR 1.3e-3 2.6e-3 4.7e-3 1.2e-1 9.3e-2 3.0e-2 6.3e-3
ES/BR 92 5 4 1 1.5 5.7 21

You can see that Bayesian regularization performs better than early stopping
in most cases. The performance improvement is most noticeable when the data
set is small, or if there is little noise in the data set. The BALL data set, for
example, was obtained from sensors that had very little noise.

Although the generalization performance of Bayesian regularization is often
better than early stopping, this is not always the case. In addition, the form of
Bayesian regularization implemented in the toolbox does not perform as well
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on pattern recognition problems as it does on function approximation
problems. This is because the approximation to the Hessian that is used in the
Levenberg-Marquardt algorithm is not as accurate when the network output is
saturated, as would be the case in pattern recognition problems. Another
disadvantage of the Bayesian regularization method is that it generally takes
longer to converge than early stopping.
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Preprocessing and Postprocessing

Neural network training can be made more efficient if you perform certain
preprocessing steps on the network inputs and targets. This section describes
several preprocessing routines that you can use.

Min and Max (mapminmax)

Before training, it is often useful to scale the inputs and targets so that they
always fall within a specified range. You can use the function mapminmax to
scale inputs and targets so that they fall in the range [-1,1]. The following code
illustrates the use of this function.

[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
net = train(net,pn,tn);

The original network inputs and targets are given in the matrices p and t. The
normalized inputs and targets pn and tn that are returned will all fall in the
interval [-1,1]. The structures ps and ts contain the settings, in this case the
minimum and maximum values of the original inputs and targets. After the
network has been trained, the ps settings should be used to transform any
future inputs that are applied to the network. They effectively become a part of
the network, just like the network weights and biases.

If mapminmax is used to scale the targets, then the output of the network will be
trained to produce outputs in the range [-1,1]. To convert these outputs back
into the same units that were used for the original targets, use the settings ts.
The following code simulates the network that was trained in the previous
code, and then converts the network output back into the original units.

an = sim(net,pn);
a = mapminmax( reverse',an,ts);

The network output an corresponds to the normalized targets tn. The
unnormalized network output a is in the same units as the original targets t.

If mapminmax is used to preprocess the training set data, then whenever the
trained network is used with new inputs they should be preprocessed with the
minimum and maximums that were computed for the training set stored in the
settings ps. The following code applies a new set of inputs to the network
already trained.
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pnewn = mapminmax( apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapminmax( reverse',anewn,ts);

Mean and Stand. Dev. (mapstd)

Another approach for scaling network inputs and targets is to normalize the
mean and standard deviation of the training set. The function mapstd
normalizes the inputs and targets so that they will have zero mean and unity
standard deviation. The following code illustrates the use of mapstd.

[pn,ps] = mapstd(p);
[tn,ts] mapstd(t);

The original network inputs and targets are given in the matrices p and t. The
normalized inputs and targets pn and tn that are returned will have zero
means and unity standard deviation. The settings structures ps and ts contain
the means and standard deviations of the original inputs and original targets.
After the network has been trained, you should use these settings to transform
any future inputs that are applied to the network. They effectively become a
part of the network, just like the network weights and biases.

If mapstd is used to scale the targets, then the output of the network is trained
to produce outputs with zero mean and unity standard deviation. To convert
these outputs back into the same units that were used for the original targets,
use ts. The following code simulates the network that was trained in the
previous code, and then converts the network output back into the original
units.

an = sim(net,pn);
a = mapstd('reverse',an,ts);

The network output an corresponds to the normalized targets tn. The
unnormalized network output a is in the same units as the original targets t.

If mapstdis used to preprocess the training set data, then whenever the trained
network is used with new inputs, you should preprocess them with the means
and standard deviations that were computed for the training set using ps. The
following code applies a new set of inputs to the network already trained.

pnewn = mapstd( apply',pnew,ps);
anewn sim(net,pnewn);
anew = mapstd( reverse',anewn,ts);
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Principal Component Analysis (processpca)

In some situations, the dimension of the input vector is large, but the
components of the vectors are highly correlated (redundant). It is useful in this
situation to reduce the dimension of the input vectors. An effective procedure
for performing this operation is principal component analysis. This technique
has three effects: it orthogonalizes the components of the input vectors (so that
they are uncorrelated with each other), it orders the resulting orthogonal
components (principal components) so that those with the largest variation
come first, and it eliminates those components that contribute the least to the
variation in the data set. The following code illustrates the use of processpca,
which performs a principal component analysis.

[pn,ps1] = mapstd(p);
[ptrans,ps2] = processpca(pn,0.02);

The input vectors are first normalized, using mapstd, so that they have zero
mean and unity variance. This is a standard procedure when using principal
components. In this example, the second argument passed to processpca is
0.02. This means that processpca eliminates those principal components that
contribute less than 2% to the total variation in the data set. The matrix
ptrans contains the transformed input vectors. The settings structure ps2
contains the principal component transformation matrix. After the network
has been trained, these settings should be used to transform any future inputs
that are applied to the network. It effectively becomes a part of the network,
just like the network weights and biases. If you multiply the normalized input
vectors pn by the transformation matrix transMat, you obtain the transformed
input vectors ptrans.

If processpca is used to preprocess the training set data, then whenever the
trained network is used with new inputs, you should preprocess them with the
transformation matrix that was computed for the training set, using ps2. The
following code applies a new set of inputs to a network already trained.

pnewn = mapstd( apply',pnew,psi);
pnewtrans = processpca( apply',pnewn,ps2);
a = sim(net,pnewtrans);
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Processing Unknown Inputs (fixunknowns)

If you have input data with unknown values, you can represent them with NaN
values. For example, here are five 2-element vectors with unknown values in
the first element of two of the vectors:

pt = [1 NaN 3 2 NaN; 3 1 -1 2 4];

The network will not be able to process the NaN values properly. Use the
function fixunknowns to transform each row with NaN values (in this case only
the first row) into two rows that encode that same information numerically.

[p2,ps] = fixunknowns(p1);
Here is how the first row of values was recoded as two rows.

p2

3
)
-1

W = = 1
- o N
N = N
A ODN

The first new row is the original first row, but with the mean value for that row
(in this case 2) replacing all NaN values. The elements of the second new row are
now either 1, indicating the original element was a known value, or 0
indicating that it was unknown. The original second row is now the new third
row. In this way both known and unknown values are encoded numerically in
a way that lets the network be trained and simulated.

Whenever supplying new data to the network, you should transform the inputs
in the same way, using the settings ps returned by fixunknowns when it was
used to transform the training input data.

p2new = fixunknowns( apply',plinew,ps);

Representing Unknown or Don’t Care Targets

Unknown or “don’t care” targets can also be represented with NaN values. We
do not want unknown target values to have an impact on training, but if a
network has several outputs, some elements of any target vector may be known
while others are unknown. One solution would be to remove the partially
unknown target vector and its associated input vector from the training set,
but that involves the loss of the good target values. A better solution is to
represent those unknown targets with NaN values. All the performance
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functions of the toolbox will ignore those targets for purposes of calculating
performance and derivatives of performance.

Posttraining Analysis (postreg)

The performance of a trained network can be measured to some extent by the
errors on the training, validation, and test sets, but it is often useful to
investigate the network response in more detail. One option is to perform a
regression analysis between the network response and the corresponding
targets. The routine postreg is designed to perform this analysis.

The following commands illustrate how to perform a regression analysis on the
network trained in “Early Stopping” on page 5-55.

a = sim(net,p);
[m,b,r] = postreg(a,t)

m =
0.9874

b =
-0.0067

r =
0.9935

The network output and the corresponding targets are passed to postreg. It
returns three parameters. The first two, m and b, correspond to the slope and
the y-intercept of the best linear regression relating targets to network outputs.
If there were a perfect fit (outputs exactly equal to targets), the slope would be
1, and the y-intercept would be 0. In this example, you can see that the
numbers are very close. The third variable returned by postreg is the
correlation coefficient (R-value) between the outputs and targets. It is a
measure of how well the variation in the output is explained by the targets. If
this number is equal to 1, then there is perfect correlation between targets and
outputs. In the example, the number is very close to 1, which indicates a good
fit.

The following figure illustrates the graphical output provided by postreg. The
network outputs are plotted versus the targets as open circles. The best linear
fit is indicated by a dashed line. The perfect fit (output equal to targets) is
indicated by the solid line. In this example, it is difficult to distinguish the best
linear fit line from the perfect fit line because the fit is so good.
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Sample Training Session

A number of different concepts are covered in this chapter. At this point it
might be useful to put some of these ideas together with an example of how a
typical training session might go.

This example uses data from a medical application [PuL.u92]. The goal is to
design an instrument that can determine serum cholesterol levels from
measurements of spectral content of a blood sample. There are a total of 264
patients for which there are measurements of 21 wavelengths of the spectrum.
For the same patients there are also measurements of HDL, LDL, and VLDL
cholesterol levels, based on serum separation. The first step is to load the data
into the workspace and perform a principal component analysis.

load choles_all

[pn,ps1] = mapstd(p);

[ptrans,ps2] = processpca(pn,0.001);
[tn,ts] = mapstd(t);

Those principal components that account for 99.9% of the variation in the data
set are conservatively retained. Now check the size of the transformed data.

[R,Q] = size(ptrans)
R

([ |

Q
264

There is apparently significant redundancy in the data set, because the
principal component analysis reduced the size of the input vectors from 21 to 4.

The next step is to divide the data into training, validation, and test subsets.
Take one-fourth of the data for the validation set, one-fourth for the test set,
and one-half for the training set. Pick the sets as equally spaced points
throughout the original data.

iitst = 2:4:Q;

iival = 4:4:Q;

iitr = [1:4:Q 3:4:Q];

val.P = ptrans(:,iival); val.T = tn(:,iival);
test.P = ptrans(:,iitst); test.T = tn(:,iitst);
ptr = ptrans(:,iitr); ttr = tn(:,iitr);
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You are now ready to create a network and train it. For this example, try a
two-layer network, with tan-sigmoid transfer function in the hidden layer and
a linear transfer function in the output layer. This is a useful structure for
function approximation (or regression) problems. As an initial guess, use five
neurons in the hidden layer. The network should have three output neurons
because there are three targets. The Levenberg-Marquardt algorithm is used
for training.

net = newff(minmax(ptr),[5 3],{ 'tansig' 'purelin'},'trainlm');
[net,tr]=train(net,ptr,ttr,[],[],val,test);

TRAINLM, Epoch 0/100, MSE 3.11023/0, Gradient 804.959/1e-10
TRAINLM, Epoch 15/100, MSE 0.330295/0, Gradient 104.219/1e-10
TRAINLM, Validation stop.

The training stopped after 15 iterations because the validation error increased.
It is a useful diagnostic tool to plot the training, validation, and test errors to
check the progress of training. You can do that with the following commands.

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)
legend('Training', 'Validation', 'Test',-1);
ylabel('Squared Error'); xlabel('Epoch')

The result is shown in the following figure. The result here is reasonable,
because the test set error and the validation set error have similar
characteristics, and it doesn’t appear that any significant overfitting has
occurred.



Sample Training Session

3.5 T T

—_— Training
Validation

25 - - Test

Squared Error
N

=
0

0.5

Epoch

The next step is to perform some analysis of the network response. Put the
entire data set through the network (training, validation, and test) and
perform a linear regression between the network outputs and the
corresponding targets. First, unnormalize the network outputs.

an = sim(net,ptrans);
a = mapstd('reverse',an,ts);
for i=1:3
figure(i)
[m(i),b(1),r(1)] = postreg(a(i,:),t(i,:));
end

In this case, there are three outputs, so perform three regressions. The results
are shown in the following figures.
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The first two outputs seem to track the targets reasonably well (this is a
difficult problem), and the R-values are almost 0.9. The third output (VLDL
levels) is not well modeled. The problem needs more work. You might go on to
try other network architectures (more hidden layer neurons), or to try
Bayesian regularization instead of early stopping for the training technique. Of
course there is also the possibility that VLDL levels cannot be accurately
computed based on the given spectral components.

The demonstration demobp1 contains the sample training session. The function
nnsample contains all the commands used in this section. You can use it as a
template for your own training sessions.
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The gradient descent algorithm is generally very slow because it requires small
learning rates for stable learning. The momentum variation is usually faster
than simple gradient descent, because it allows higher learning rates while
maintaining stability, but it is still too slow for many practical applications.
These two methods are normally used only when incremental training is
desired. You would normally use Levenberg-Marquardt training for small and
medium size networks, if you have enough memory available. If memory is a
problem, then there are a variety of other fast algorithms available. For large
networks you will probably want to use trainscg or trainrp.

Multilayered networks are capable of performing just about any linear or
nonlinear computation, and can approximate any reasonable function
arbitrarily well. Such networks overcome the problems associated with the
perceptron and linear networks. However, while the network being trained
might theoretically be capable of performing correctly, backpropagation and its
variations might not always find a solution. See page 12-8 of [HDB96] for a
discussion of convergence to local minimum points.

Picking the learning rate for a nonlinear network is a challenge. As with linear
networks, a learning rate that is too large leads to unstable learning.
Conversely, a learning rate that is too small results in incredibly long training
times. Unlike linear networks, there is no easy way of picking a good learning
rate for nonlinear multilayer networks. See page 12-8 of [HDB96] for examples
of choosing the learning rate. With the faster training algorithms, the default
parameter values normally perform adequately.

The error surface of a nonlinear network is more complex than the error
surface of a linear network. To understand this complexity, see the figures on
pages 12-5 to 12-7 of [HDB96], which show three different error surfaces for a
multilayer network. The problem is that nonlinear transfer functions in
multilayer networks introduce many local minima in the error surface. As
gradient descent is performed on the error surface it is possible for the network
solution to become trapped in one of these local minima. This can happen,
depending on the initial starting conditions. Settling in a local minimum can
be good or bad depending on how close the local minimum is to the global
minimum and how low an error is required. In any case, be cautioned that
although a multilayer backpropagation network with enough neurons can
implement just about any function, backpropagation does not always find the
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correct weights for the optimum solution. You might want to reinitialize the
network and retrain several times to guarantee that you have the best solution.

Networks are also sensitive to the number of neurons in their hidden layers.
Too few neurons can lead to underfitting. Too many neurons can contribute to
overfitting, in which all training points are well fitted, but the fitting curve
oscillates wildly between these points. Ways of dealing with various of these
issues are discussed in “Improving Generalization” on page 5-51. This topic is
also discussed starting on page 11-21 of [HDB96].
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Introduction

Neural networks can be classified into dynamic and static categories. Static
(feedforward) networks have no feedback elements and contain no delays; the
output is calculated directly from the input through feedforward connections.
The training of static networks was discussed in Chapter 5, “Backpropagation.”
In dynamic networks, the output depends not only on the current input to the
network, but also on the current or previous inputs, outputs, or states of the
network. You saw some linear dynamic networks in Chapter 4, “Linear
Filters.”

Dynamic networks can also be divided into two categories: those that have only
feedforward connections, and those that have feedback, or recurrent,
connections.

Examples of Dynamic Networks

To understand the differences between static, feedforward-dynamic, and
recurrent-dynamic networks, create some networks and see how they respond
to an input sequence. (First, you might want to review the section on applying
sequential inputs to a dynamic network on page 2-14.)

The following command creates a pulse input sequence and plots it:

p={00011110000 0};
stem(cell2mat(p))

The resulting pulse is shown in the next figure.
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Now create a static network and find the network response to the pulse
sequence. The following commands create a simple linear network with one
layer, one neuron, no bias, and a weight of 2:

net = newlin([-1 1]1,1);
net.biasConnect = 0;
net.IW{1,1} = 2;

You can now simulate the network response to the pulse input and plot it:

a = sim(net,p);
stem(cell2mat(a))

The result is shown in the following figure. Note that the response of the static
network lasts just as long as the input pulse. The response of the static network
at any time point depends only on the value of the input sequence at that same
time point.
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Now create a dynamic network, but one that does not have any feedback
connections (a nonrecurrent network). You can use the same network used on
page 2-14, which was a linear network with a tapped delay line on the input:

net = newlin([-1 1],1,[0 1]);
net.biasConnect = 0;
net.IW{1,1} = [1 1];

You can again simulate the network response to the pulse input and plot it:

a = sim(net,p);
stem(cell2mat(a))

The response of the dynamic network, shown in the following figure, lasts
longer than the input pulse. The dynamic network has memory. Its response at
any given time depends not only on the current input, but on the history of the
input sequence. If the network does not have any feedback connections, then
only a finite amount of history will affect the response. In this figure you can
see that the response to the pulse lasts one time step beyond the pulse
duration. That is because the tapped delay line on the input has a maximum
delay of 1.
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Now consider a simple recurrent-dynamic network, shown in the following

figure.
Inputs Linear Neuron
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a(t) = iw,,p(H)+Iw, ,a(t-1)

You can create the network and simulate it with the following commands. The
newnarx command is discussed in “NARX Network (newnarx, newnarxsp,

sp2narx)” on page 6-18.
net = newnarx([-1 1],0,1,1,{'purelin'});
net.biasConnect = 0; net.LW{1} = .5; net.IW{1} = 1;
a = sim(net,p);
stem(cell2mat(a))
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The following figure is the plot of the network response.
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Notice that the recurrent-dynamic networks typically have a longer response
than the feedforward-dynamic networks. For linear networks, the
feedforward-dynamic networks are called finite impulse response (FIR),
because the response to an impulse input will become zero after a finite amount
of time. The linear recurrent-dynamic networks are called infinite impulse
response (IIR), because the response to an impulse can decay to zero (for a
stable network), but it will never become exactly equal to zero. An impulse
response for a nonlinear network cannot be defined, but the ideas of finite and
infinite responses do carry over.

Applications of Dynamic Networks

Dynamic networks are generally more powerful than static networks (although
somewhat more difficult to train). Because dynamic networks have memory,
they can be trained to learn sequential or time-varying patterns. This has
applications in such disparate areas as prediction in financial markets
[RoJa96], channel equalization in communication systems [FeTs03], phase
detection in power systems [KaGr96], sorting [JaRa04], fault detection
[ChDa99], speech recognition [Robin94], and even the prediction of protein
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structure in genetics [GiPr02]. You can find a discussion of many more dynamic
network applications in [Meda00].

One principal application of dynamic neural networks is in control systems.
This application is discussed in detail in Chapter 7, “Control Systems.”
Dynamic networks are also well suited for filtering. You have seen the use of
some linear dynamic networks for filtering in Chapter 4, “Linear Filters,” and
some of those ideas are extended in this chapter, using nonlinear dynamic
networks.

Dynamic Network Structures

Neural Network Toolbox is designed to train a class of network called the
Layered Digital Dynamic Network (LDDN). Any network that can be arranged
in the form of an LDDN can be trained with the toolbox. Here is a basic
description of the LDDN.

Each layer in the LDDN is made up of the following parts:

® Set of weight matrices that come into that layer (which can connect from
other layers or from external inputs), associated weight function rule used to
combine the weight matrix with its input (normally standard matrix
multiplication, dotprod), and associated tapped delay line

® Bias vector

¢ Net input function rule that is used to combine the outputs of the various
weight functions with the bias to produce the net input (normally a summing
junction, netprod)

e Transfer function

The network has inputs that are connected to special weights, called input
weights, and denoted by IW*/ (net.IW{i,j} in the code), where j denotes the
number of the input vector that enters the weight, and i denotes the number of
the layer to which the weight is connected. The weights connecting one layer to
another are called layer weights and are denoted by LW/ (net.LW{i,j} in the
code), where j denotes the number of the layer coming into the weight and i
denotes the number of the layer at the output of the weight.

The following figure is an example of a three-layer LDDN. The first layer has
three weights associated with it: one input weight, a layer weight from layer 1,
and a layer weight from layer 3. The two layer weights have tapped delay lines
associated with them.
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Neural Network Toolbox can be used to train any LDDN, so long as the weight
functions, net input functions, and transfer functions have derivatives. Most
well-known dynamic network architectures can be represented in LDDN form.
In the remainder of this chapter you will see how to use some simple commands
to create and train several very powerful dynamic networks. Other LDDN
networks not covered in this chapter can be created using the generic network
command, as explained in Chapter 12, “Advanced Topics.”

Dynamic Network Training

Dynamic networks are trained in Neural Network Toolbox using the same
gradient-based algorithms that were described in Chapter 5,
“Backpropagation.” You can select from any of the training functions that were
presented in that chapter. Examples are provided in the following sections.

Although dynamic networks can be trained using the same gradient-based
algorithms that are used for static networks, the performance of the algorithms
on dynamic networks can be quite different, and the gradient must be
computed in a more complex way. Consider the simple recurrent network
shown on page 6-6. The weights have two different effects on the network
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output. The first is the direct effect, because a change in the weight causes an
immediate change in the output at the current time step. (This first effect can
be computed using standard backpropagation.) The second is an indirect effect,
because some of the inputs to the layer, such asa(¢ 1), are also functions of
the weights. To account for this indirect effect, you must use dynamic
backpropagation to compute the gradients, which is more computationally
intensive. (See [DeHa0la] and [DeHaO1b].) Expect dynamic backpropagation
to take more time to train, in part for this reason. In addition, the error
surfaces for dynamic networks can be more complex than those for static
networks. Training is more likely to be trapped in local minima. This suggests
that you might need to train the network several times to achieve an optimal
result. See [DHMO01] for some discussion on the training of dynamic networks.

The remaining sections of this chapter demonstrate how to create, train, and
apply certain dynamic networks to modeling, detection, and forecasting
problems. Some of the networks require dynamic backpropagation for
computing the gradients and others do not. As a user, you do not need to decide
whether or not dynamic backpropagation is needed. This is determined
automatically by the software, which also decides on the best form of dynamic
backpropagation to use. You just need to create the network and then invoke
the standard train command.
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Focused Time-Delay Neural Network (newffid)

Begin with the most straightforward dynamic network, which consists of a
feedforward network with a tapped delay line at the input. This is called the
focused time-delay neural network (FTDNN). This is part of a general class of
dynamic networks, called focused networks, in which the dynamics appear only
at the input layer of a static multilayer feedforward network. The following
figure illustrates a two-layer FTDNN.
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This network is well suited to time-series prediction. The following
demonstrates the use of the FTDNN for predicting a classic time series.

The following figure is a plot of normalized intensity data recorded from a
Far-Infrared-Laser in a chaotic state. This is a part of one of several sets of data
used for the Santa Fe Time Series Competition [WeGe94]. In the competition,
the objective was to use the first 1000 points of the time series to predict the
next 100 points. Because the objective is simply to illustrate how to use the
FTDNN for prediction, the network is trained to perform one-step-ahead
predictions. (You can use the resulting network for multistep-ahead
predictions by feeding the predictions back to the input of the network and
continuing to iterate.)
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The first step is to load the data, normalize it, and convert it to a time sequence
(represented by a cell array):

load laser

y = y(1:600)"';

[y,ys] = mapminmax(y);
y = con2seq(y);

Now create the FTDNN network, using the newfftd command. This command
is similar to the newff command, described on page 5-7, with the additional
input of the tapped delay line vector (the second input). For this example, use
a tapped delay line with delays from 1 to 8, and use five neurons in the hidden
layer:

ftdnn_net = newfftd([-1 1],[1:8],[5 1],{ 'tansig’' 'purelin'});
ftdnn_net.trainParam.show = 10;
ftdnn_net.trainParam.epochs = 50;

Arrange the network inputs and targets for training. Because the network has
a tapped delay line with a maximum delay of 8, begin by predicting the ninth
value of the time series. You also need to load the tapped delay line with the
eight initial values of the time series (contained in the variable Pi).



Focused Time-Delay Neural Network (newfftd)

p = y(9:end);
t y(9:end);
for k=1:8,
Pi{1,k}=y{k};
end
[ftdnn_net] = train(ftdnn_net,p,t,Pi);

Notice that the input to the network is the same as the target. Because the
network has a minimum delay of one time step, this means that you are
performing a one-step-ahead prediction. The training proceeds as follows,
using the default trainlm training function:

TRAINLM-calcjx, Epoch 0/50, MSE 0.353528/0, Gradient 1.31539/1e-010
TRAINLM-calcjx, Epoch 10/50, MSE 0.00225499/0, Gradient 0.00549387/1e-010
TRAINLM-calcjx, Epoch 20/50, MSE 0.00155725/0, Gradient 0.00054516/1e-010
TRAINLM-calcjx, Epoch 30/50, MSE 0.00118162/0, Gradient 0.00166592/1e-010
TRAINLM-calcjx, Epoch 40/50, MSE 0.00077035/0, Gradient 0.00393992/1e-010
TRAINLM-calcjx, Epoch 50/50, MSE 0.000676096/0, Gradient
0.00037696/1e-010

TRAINLM, Maximum epoch reached, performance goal was not met.

(Your numbers might be different, depending on the initial random weights.)
Now simulate the network and determine the prediction error.

yp = sim(ftdnn_net,p,Pi);
yp = cell2mat(yp);

e = yp-cell2mat(t);

rmse = sqrt(mse(e))

rmse =
0.0260

This result is much better than you could have obtained using a linear
predictor, such as those shown in Chapter 4, “Linear Filters.” You can verify
this with the following commands, which design a linear filter with the same
tapped delay line input as the previous FTDNN. (Because newlind creates a
tapped delay line that contains a zero delay, you need to shift the input to the
network by one time step.)

p = y(8:end-1);

clear Pi

for k=1:7,
Pi{1,k}=y{k};

end
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lin_net = newlind(p,t,Pi);
lin_yp = sim(lin_net,p,Pi);
lin_yp = cell2mat(lin_yp);
lin_e = lin_yp-cell2mat(t);
lin_rmse = sqrt(mse(lin_e))

lin_rmse =
0.1807

The rms error is 0.1807 for the linear predictor, but 0.0260 for the nonlinear
FTDNN predictor.

One nice feature of the FTDNN is that it does not require dynamic
backpropagation to compute the network gradient. This is because the tapped
delay line appears only at the input of the network, and contains no feedback
loops or adjustable parameters. For this reason, you will find that this network
trains faster than other dynamic networks.

If you have an application for a dynamic network, try the linear network first
(newlind) and then the FTDNN (newfftd). If neither network is satisfactory,

try one of the more complex dynamic networks discussed in the remainder of
this chapter.
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Distributed Time-Delay Neural Network (newdtdnn)

The FTDNN had the tapped delay line memory only at the input to the first
layer of the static feedforward network. You can also distribute the tapped
delay lines throughout the network. The distributed TDNN was first
introduced in [WaHa89] for phoneme recognition. The original architecture
was very specialized for that particular problem. The figure below shows a
general two-layer distributed TDNN.

Inputs Layer 1 Layer 2
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This network can be used for a simplified problem that is similar to phoneme
recognition. The network will attempt to recognize the frequency content of an
input signal. The following figure shows a signal in which one of two
frequencies is present at any given time.
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The following code creates this signal and a target network output. The target
output is 1 when the input is at the low frequency and -1 when the input is at

the high frequency.

time = 0:99;

y1 = sin(2*pi*time/10);
y2 sin(2*pi*time/5);
y=[y1 y2 y1 y2];

t1 = ones(1,100);

t2 = -ones(1,100);

t = [t1 t2 t1 t2];

Now create the distributed TDNN network with the newdtdnn function. The
only difference between this function and the newfftd function is that the
second input argument is a cell array containing the tapped delays to be used
in each layer. Here delays of zero to four are used in layer 1 and zero to three
are used in layer 2. (To add some variety, the training function trainbr is used
in this example instead of the default, which is trainlm. You can use any
training function discussed in Chapter 5, “Backpropagation.”)

di = 0:4;
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d2 = 0:3;

dtdnn_net = newdtdnn([-1 1],{d1,d2},[5 1],{'tansig' 'purelin'});
dtdnn_net.trainFcn = 'trainbr';
dtdnn_net.trainParam.show = 5;
dtdnn_net.trainParam.epochs = 30;

p = con2seq(y);

t = con2seq(t);

[dtdnn_net] = train(dtdnn_net,p,t);
yp = sim(dtdnn_net,p);

yp = cell2mat(yp);

plot(yp);

The following figure shows the trained network output. The network is able to
accurately distinguish the two “phonemes.”

0.5 q
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You will notice that the training is generally slower for the distributed TDNN
network than for the FTDNN. This is because the distributed TDNN must use
dynamic backpropagation.
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NARX Network (newnarx, newnarxsp, sp2narx)

All the specific dynamic networks discussed so far have either been focused
networks, with the dynamics only at the input layer, or feedforward networks.
The nonlinear autoregressive network with exogenous inputs (NARX) is a
recurrent dynamic network, with feedback connections enclosing several
layers of the network. The NARX model is based on the linear ARX model,
which is commonly used in time-series modeling.

The defining equation for the NARX model is

y(@&) = fy(t-1),y(t-2), ...,y(t—ny), u(t-1),u(t-2),..,u(t-n,))

where the next value of the dependent output signal y (¢) is regressed on
previous values of the output signal and previous values of an independent
(exogenous) input signal. You can implement the NARX model by using a
feedforward neural network to approximate the function /. A diagram of the
resulting network is shown below, where a two-layer feedforward network is
used for the approximation. This implementation also allows for a vector ARX
model, where the input and output can be multidimensional.
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There are many applications for the NARX network. It can be used as a
predictor, to predict the next value of the input signal. It can also be used for
nonlinear filtering, in which the target output is a noise-free version of the
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input signal. The use of the NARX network is demonstrated in another
important application, the modeling of nonlinear dynamic systems.

Before demonstrating the training of the NARX network, an important
configuration that is useful in training needs explanation. You can consider the
output of the NARX network to be an estimate of the output of some nonlinear
dynamic system that you are trying to model. The output is fed back to the
input of the feedforward neural network as part of the standard NARX
architecture, as shown in the left figure below. Because the true output is
available during the training of the network, you could create a series-parallel
architecture (see [NaPa91]), in which the true output is used instead of feeding
back the estimated output, as shown in the right figure below. This has two
advantages. The first is that the input to the feedforward network is more
accurate. The second is that the resulting network has a purely feedforward
architecture, and static backpropagation can be used for training.

1] 1]
u® g Feed u® g Feed
L L
— Forward A — Forward ) A
7] Network y() 7] Network y()
D ¥(?) —p|D{P)
L) L
Parallel Architecture Series-Parallel Architecture

The following demonstrates the use of the series-parallel architecture for
training an NARX network to model a dynamic system.

The example of the NARX network is the magnetic levitation system described
beginning on page 7-18. The bottom graph in the following figure shows the
voltage applied to the electromagnet, and the top graph shows the position of
the permanent magnet. The data was collected at a sampling interval of 0.01
seconds to form two time series.
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The goal is to develop an NARX model for this magnetic levitation system. First
load the training data. Use tapped delay lines with two delays for both the
input and the output, so training begins with the third data point. There are
two inputs to the series-parallel network, the u (¢) sequence and the y (¢)
sequence, so p is a cell array with two rows.

load magdata

[u,us] = mapminmax(u);
[y,ys] = mapminmax(y);
y = con2seq(y); u = con2seq(u);

p = [u(3:end);y(3:end)]; t = y(3:end);

Create the series-parallel NARX network using the function newnarxsp. Use 10
neurons in the hidden layer and use trainbr for the training function.

di = [1:2];

d2 = [1:2];

narx_net = newnarxsp({[-1 1],[-1 1]},d1,d2,[10 1],{'tansig’', 'purelin'});
narx_net.trainFcn = 'trainbr';

narx_net.trainParam.show = 10;
narx_net.trainParam.epochs = 600;
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Now you are ready to train the network. First you need to load the tapped delay
lines with the initial inputs and outputs. The following commands illustrate
these steps.

for k=1:2,
Pi{1,k}=u{k};

end

for k=1:2,
Pi{2,k}=y{k};

end

narx_net = train(narx_net,p,t,Pi);

You can now simulate the network and plot the resulting errors for the
series-parallel implementation.

yp = sim(narx_net,p,Pi);
e = cell2mat(yp)-cell2mat(t);
plot(e)

The result is displayed in the following plot. You can see that the errors are
very small. However, because of the series-parallel configuration, these are
errors for only a one-step-ahead prediction. A more stringent test would be to
rearrange the network into the original parallel form and then to perform an
iterated prediction over many time steps. Now the parallel operation is
demonstrated.
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There is a toolbox function (sp2narx) for converting NARX networks from the
series-parallel configuration, which is useful for training, to the parallel
configuration. The following commands illustrate how to convert the network
just trained to parallel form and then use that parallel configuration to perform
an iterated prediction of 900 time steps. In this network you need to load the
two initial inputs and the two initial outputs as initial conditions.

narx_net2 = sp2narx(narx_net);
y1=y(1700:2600); ui1=u(1700:2600);
p1 = u1(3:end); t1 = y1(3:end);
for k=1:2,
Ai1{1,k}=zeros(10,1);
Ai1{2,k}=y1{k};
end
for k=1:2,
Pit1{1,k}=ut{k};
end
yp1 = sim(narx_net2,p1,Pi1,Ail);
plot([cell2mat(yp1)' cell2mat(t1)'])
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